메뉴 건너뛰기




Volumn 8, Issue MAR, 2017, Pages

Barriers to radiation-induced in situ tumor vaccination

Author keywords

Abscopal effect; Adenosine; Hypoxia; Immunotherapy; Macrophages; Radiation therapy; Transforming growth factor ; Tumor microenvironment

Indexed keywords

5' NUCLEOTIDASE; ADENOSINE DIPHOSPHATE; ADENOSINE PHOSPHATE; ADENOSINE RECEPTOR 2A; ADENOSINE TRIPHOSPHATE; BEVACIZUMAB; CARLUMAB; CARRIER PROTEINS AND BINDING PROTEINS; CD39 ANTIGEN; CHEMOKINE RECEPTOR CCR2; COLONY STIMULATING FACTOR 1 RECEPTOR; FRESOLIMUMAB; GALUNISERTIB; HYPOXIA INDUCIBLE FACTOR 1ALPHA; INTERLEUKIN 10; INTERLEUKIN 18; INTERLEUKIN 1BETA; MONOCYTE CHEMOTACTIC PROTEIN 1; PROSTAGLANDIN E2; PURINERGIC RECEPTOR P2X 7; REACTIVE OXYGEN METABOLITE; SORAFENIB; TRANSFORMING GROWTH FACTOR BETA; UNCLASSIFIED DRUG; VASCULOTROPIN A; VASCULOTROPIN RECEPTOR; VASCULOTROPIN RECEPTOR 2;

EID: 85017268441     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2017.00229     Document Type: Review
Times cited : (156)

References (135)
  • 1
    • 84886698315 scopus 로고    scopus 로고
    • Innate and adaptive immune cells in the tumor microenvironment
    • Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol (2013) 14(10):1014-22. doi: 10.1038/ni.2703
    • (2013) Nat Immunol , vol.14 , Issue.10 , pp. 1014-1022
    • Gajewski, T.F.1    Schreiber, H.2    Fu, Y.X.3
  • 2
    • 84872026647 scopus 로고    scopus 로고
    • Radiation therapy to convert the tumor into an in situ vaccine
    • Formenti SC, Demaria S. Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys (2012) 84(4):879-80. doi:10.1016/j.ijrobp.2012.06.020
    • (2012) Int J Radiat Oncol Biol Phys , vol.84 , Issue.4 , pp. 879-880
    • Formenti, S.C.1    Demaria, S.2
  • 3
    • 62449131194 scopus 로고    scopus 로고
    • Immunogenic cell death modalities and their impact on cancer treatment
    • Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, et al. Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis (2009) 14(4):364-75. doi:10.1007/s10495-008-0303-9
    • (2009) Apoptosis , vol.14 , Issue.4 , pp. 364-375
    • Kepp, O.1    Tesniere, A.2    Schlemmer, F.3    Michaud, M.4    Senovilla, L.5    Zitvogel, L.6
  • 4
    • 84941876964 scopus 로고    scopus 로고
    • Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases
    • Frey B, Hehlgans S, Rödel F, Gaipl US. Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett (2015) 368(2):230-7. doi:10.1016/j.canlet.2015.04.010
    • (2015) Cancer Lett , vol.368 , Issue.2 , pp. 230-237
    • Frey, B.1    Hehlgans, S.2    Rödel, F.3    Gaipl, U.S.4
  • 6
    • 84886943382 scopus 로고    scopus 로고
    • ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy
    • Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, et al. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. Oncoimmunology (2013) 2(6):e24568. doi:10.4161/onci.24568
    • (2013) Oncoimmunology , vol.2 , Issue.6
    • Ma, Y.1    Adjemian, S.2    Yang, H.3    Catani, J.P.4    Hannani, D.5    Martins, I.6
  • 7
    • 84896724517 scopus 로고    scopus 로고
    • Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing
    • Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget (2014) 5(2):403-16. doi:10.18632/oncotarget.1719
    • (2014) Oncotarget , vol.5 , Issue.2 , pp. 403-416
    • Gameiro, S.R.1    Jammeh, M.L.2    Wattenberg, M.M.3    Tsang, K.Y.4    Ferrone, S.5    Hodge, J.W.6
  • 8
    • 84911461919 scopus 로고    scopus 로고
    • Norm-and hypo-fractionated radiotherapy is capable of activating human dendritic cells
    • Kulzer L, Rubner Y, Deloch L, Allgäuer A, Frey B, Fietkau R, et al. Norm-and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol (2014) 11(4):328-36. doi:10.3109/1547691X.2014.880533
    • (2014) J Immunotoxicol , vol.11 , Issue.4 , pp. 328-336
    • Kulzer, L.1    Rubner, Y.2    Deloch, L.3    Allgäuer, A.4    Frey, B.5    Fietkau, R.6
  • 9
    • 35748942876 scopus 로고    scopus 로고
    • The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy
    • Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev (2007) 220:47-59. doi:10.1111/j.1600-065X.2007.00573.x
    • (2007) Immunol Rev , vol.220 , pp. 47-59
    • Apetoh, L.1    Ghiringhelli, F.2    Tesniere, A.3    Criollo, A.4    Ortiz, C.5    Lidereau, R.6
  • 10
    • 51549088023 scopus 로고    scopus 로고
    • Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells
    • Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol (2008) 181(5):3099-107. doi:10.4049/jimmunol.181.5.3099
    • (2008) J Immunol , vol.181 , Issue.5 , pp. 3099-3107
    • Matsumura, S.1    Wang, B.2    Kawashima, N.3    Braunstein, S.4    Badura, M.5    Cameron, T.O.6
  • 11
    • 84894489353 scopus 로고    scopus 로고
    • Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells
    • Lim JY, Gerber SA, Murphy SP, Lord EM. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol Immunother (2014) 63(3):259-71. doi:10.1007/s00262-013-1506-7
    • (2014) Cancer Immunol Immunother , vol.63 , Issue.3 , pp. 259-271
    • Lim, J.Y.1    Gerber, S.A.2    Murphy, S.P.3    Lord, E.M.4
  • 12
    • 84977143008 scopus 로고    scopus 로고
    • Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer
    • Sridharan V, Margalit DN, Lynch SA, Severgnini M, Zhou J, Chau NG, et al. Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer. Br J Cancer (2016) 115(2):252-60. doi:10.1038/bjc.2016.166
    • (2016) Br J Cancer , vol.115 , Issue.2 , pp. 252-260
    • Sridharan, V.1    Margalit, D.N.2    Lynch, S.A.3    Severgnini, M.4    Zhou, J.5    Chau, N.G.6
  • 13
    • 45449090985 scopus 로고    scopus 로고
    • Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity
    • Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol (2008) 180(5):3132-9. doi:10.4049/jimmunol.180.5.3132
    • (2008) J Immunol , vol.180 , Issue.5 , pp. 3132-3139
    • Lugade, A.A.1    Sorensen, E.W.2    Gerber, S.A.3    Moran, J.P.4    Frelinger, J.G.5    Lord, E.M.6
  • 14
    • 33646704729 scopus 로고    scopus 로고
    • Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy
    • Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med (2006) 203(5):1259-71. doi:10.1084/jem.20052494
    • (2006) J Exp Med , vol.203 , Issue.5 , pp. 1259-1271
    • Reits, E.A.1    Hodge, J.W.2    Herberts, C.A.3    Groothuis, T.A.4    Chakraborty, M.5    Wansley, E.K.6
  • 15
    • 0037942745 scopus 로고    scopus 로고
    • Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy
    • Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol (2003) 170(12):6338-47. doi:10.4049/jimmunol.170.12.6338
    • (2003) J Immunol , vol.170 , Issue.12 , pp. 6338-6347
    • Chakraborty, M.1    Abrams, S.I.2    Camphausen, K.3    Liu, K.4    Scott, T.5    Coleman, C.N.6
  • 16
    • 1242315588 scopus 로고    scopus 로고
    • Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated
    • Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys (2004) 58(3):862-70. doi:10.1016/j.ijrobp.2003.09.012
    • (2004) Int J Radiat Oncol Biol Phys , vol.58 , Issue.3 , pp. 862-870
    • Demaria, S.1    Ng, B.2    Devitt, M.L.3    Babb, J.S.4    Kawashima, N.5    Liebes, L.6
  • 17
    • 69949085196 scopus 로고    scopus 로고
    • Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody
    • Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res (2009) 15(17):5379-88. doi:10.1158/1078-0432.CCR-09-0265
    • (2009) Clin Cancer Res , vol.15 , Issue.17 , pp. 5379-5388
    • Dewan, M.Z.1    Galloway, A.E.2    Kawashima, N.3    Dewyngaert, J.K.4    Babb, J.S.5    Formenti, S.C.6
  • 18
    • 85003053854 scopus 로고    scopus 로고
    • An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer
    • Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res (2013) 1(6):365-72. doi:10.1158/2326-6066.CIR-13-0115
    • (2013) Cancer Immunol Res , vol.1 , Issue.6 , pp. 365-372
    • Golden, E.B.1    Demaria, S.2    Schiff, P.B.3    Chachoua, A.4    Formenti, S.C.5
  • 19
    • 78049420571 scopus 로고    scopus 로고
    • In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study
    • Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol (2010) 28(28):4324-32. doi:10.1200/JCO.2010.28.9793
    • (2010) J Clin Oncol , vol.28 , Issue.28 , pp. 4324-4332
    • Brody, J.D.1    Ai, W.Z.2    Czerwinski, D.K.3    Torchia, J.A.4    Levy, M.5    Advani, R.H.6
  • 20
    • 84937525789 scopus 로고    scopus 로고
    • Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial
    • Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol (2015) 16(7):795-803. doi:10.1016/S1470-2045(15)00054-6
    • (2015) Lancet Oncol , vol.16 , Issue.7 , pp. 795-803
    • Golden, E.B.1    Chhabra, A.2    Chachoua, A.3    Adams, S.4    Donach, M.5    Fenton-Kerimian, M.6
  • 21
    • 84857815877 scopus 로고    scopus 로고
    • Immunologic correlates of the abscopal effect in a patient with melanoma
    • Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med (2012) 366(10):925-31. doi:10.1056/NEJMoa1112824
    • (2012) N Engl J Med , vol.366 , Issue.10 , pp. 925-931
    • Postow, M.A.1    Callahan, M.K.2    Barker, C.A.3    Yamada, Y.4    Yuan, J.5    Kitano, S.6
  • 22
    • 84894107349 scopus 로고    scopus 로고
    • New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape
    • Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol (2014) 27:16-25. doi:10.1016/j.coi.2014.01.004
    • (2014) Curr Opin Immunol , vol.27 , pp. 16-25
    • Mittal, D.1    Gubin, M.M.2    Schreiber, R.D.3    Smyth, M.J.4
  • 23
    • 84936953099 scopus 로고    scopus 로고
    • Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity
    • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature (2015) 523(7559):231-5. doi:10.1038/nature14404
    • (2015) Nature , vol.523 , Issue.7559 , pp. 231-235
    • Spranger, S.1    Bao, R.2    Gajewski, T.F.3
  • 24
    • 84877738839 scopus 로고    scopus 로고
    • CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer
    • Xu J, Escamilla J, Mok S, David J, Priceman S, West B, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res (2013) 73(9):2782-94. doi:10.1158/0008-5472.CAN-12-3981
    • (2013) Cancer Res , vol.73 , Issue.9 , pp. 2782-2794
    • Xu, J.1    Escamilla, J.2    Mok, S.3    David, J.4    Priceman, S.5    West, B.6
  • 25
    • 34248202688 scopus 로고    scopus 로고
    • Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus
    • Frenguelli BG, Wigmore G, Llaudet E, Dale N. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem (2007) 101(5):1400-13. doi:10.1111/j.1471-4159.2007.04425.x
    • (2007) J Neurochem , vol.101 , Issue.5 , pp. 1400-1413
    • Frenguelli, B.G.1    Wigmore, G.2    Llaudet, E.3    Dale, N.4
  • 26
    • 0036187615 scopus 로고    scopus 로고
    • The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies
    • Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol (2002) 196(3):254-65. doi:10.1002/path.1027
    • (2002) J Pathol , vol.196 , Issue.3 , pp. 254-265
    • Bingle, L.1    Brown, N.J.2    Lewis, C.E.3
  • 27
    • 41549107522 scopus 로고    scopus 로고
    • Cytokine signaling modules in inflammatory responses
    • O'Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity (2008) 28(4):477-87. doi:10.1016/j.immuni.2008.03.002
    • (2008) Immunity , vol.28 , Issue.4 , pp. 477-487
    • O'Shea, J.J.1    Murray, P.J.2
  • 28
    • 79960411324 scopus 로고    scopus 로고
    • CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis
    • Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature (2011) 475(7355):222-5. doi:10.1038/nature10138
    • (2011) Nature , vol.475 , Issue.7355 , pp. 222-225
    • Qian, B.Z.1    Li, J.2    Zhang, H.3    Kitamura, T.4    Zhang, J.5    Campion, L.R.6
  • 29
    • 68749109536 scopus 로고    scopus 로고
    • A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth
    • Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One (2009) 4(8):e6562. doi:10.1371/journal.pone.0006562
    • (2009) PLoS One , vol.4 , Issue.8
    • Qian, B.1    Deng, Y.2    Im, J.H.3    Muschel, R.J.4    Zou, Y.5    Li, J.6
  • 30
    • 50849090319 scopus 로고    scopus 로고
    • Macrophages define the invasive microenvironment in breast cancer
    • Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol (2008) 84(3):623-30. doi:10.1189/jlb.1107762
    • (2008) J Leukoc Biol , vol.84 , Issue.3 , pp. 623-630
    • Pollard, J.W.1
  • 31
    • 33845767868 scopus 로고    scopus 로고
    • Macrophages regulate the angiogenic switch in a mouse model of breast cancer
    • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res (2006) 66(23):11238-46. doi:10.1158/0008-5472.CAN-06-1278
    • (2006) Cancer Res , vol.66 , Issue.23 , pp. 11238-11246
    • Lin, E.Y.1    Li, J.F.2    Gnatovskiy, L.3    Deng, Y.4    Zhu, L.5    Grzesik, D.A.6
  • 32
    • 84919489041 scopus 로고    scopus 로고
    • Myeloid-derived cells in tumors: effects of radiation
    • Vatner RE, Formenti SC. Myeloid-derived cells in tumors: effects of radiation. Semin Radiat Oncol (2015) 25(1):18-27. doi:10.1016/j.semradonc.2014.07.008
    • (2015) Semin Radiat Oncol , vol.25 , Issue.1 , pp. 18-27
    • Vatner, R.E.1    Formenti, S.C.2
  • 33
    • 84887561907 scopus 로고    scopus 로고
    • Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy
    • Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell (2013) 24(5):589-602. doi:10.1016/j.ccr.2013.09.014
    • (2013) Cancer Cell , vol.24 , Issue.5 , pp. 589-602
    • Klug, F.1    Prakash, H.2    Huber, P.E.3    Seibel, T.4    Bender, N.5    Halama, N.6
  • 34
    • 46249090513 scopus 로고    scopus 로고
    • Colony-stimulating factors in inflammation and autoimmunity
    • Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol (2008) 8(7):533-44. doi:10.1038/nri2356
    • (2008) Nat Rev Immunol , vol.8 , Issue.7 , pp. 533-544
    • Hamilton, J.A.1
  • 35
    • 30044448462 scopus 로고    scopus 로고
    • Colony-stimulating factor-1 in immunity and inflammation
    • Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol (2006) 18(1):39-48. doi:10.1016/j.coi.2005.11.006
    • (2006) Curr Opin Immunol , vol.18 , Issue.1 , pp. 39-48
    • Chitu, V.1    Stanley, E.R.2
  • 36
    • 77949900433 scopus 로고    scopus 로고
    • Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy
    • Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood (2010) 115(7):1461-71. doi:10.1182/blood-2009-08-237412
    • (2010) Blood , vol.115 , Issue.7 , pp. 1461-1471
    • Priceman, S.J.1    Sung, J.L.2    Shaposhnik, Z.3    Burton, J.B.4    Torres-Collado, A.X.5    Moughon, D.L.6
  • 37
    • 84866784798 scopus 로고    scopus 로고
    • Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy
    • DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov (2011) 1(1):54-67. doi:10.1158/2159-8274.CD-10-0028
    • (2011) Cancer Discov , vol.1 , Issue.1 , pp. 54-67
    • DeNardo, D.G.1    Brennan, D.J.2    Rexhepaj, E.3    Ruffell, B.4    Shiao, S.L.5    Madden, S.F.6
  • 38
    • 0038230415 scopus 로고    scopus 로고
    • The macrophage growth factor CSF-1 in mammary gland development and tumor progression
    • Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia (2002) 7(2):147-62. doi:10.1023/A:1020399802795
    • (2002) J Mammary Gland Biol Neoplasia , vol.7 , Issue.2 , pp. 147-162
    • Lin, E.Y.1    Gouon-Evans, V.2    Nguyen, A.V.3    Pollard, J.W.4
  • 39
    • 77956184046 scopus 로고    scopus 로고
    • Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ
    • Sharma M, Beck AH, Webster JA, Espinosa I, Montgomery K, Varma S, et al. Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Res Treat (2010) 123(2):397-404. doi:10.1007/s10549-009-0654-0
    • (2010) Breast Cancer Res Treat , vol.123 , Issue.2 , pp. 397-404
    • Sharma, M.1    Beck, A.H.2    Webster, J.A.3    Espinosa, I.4    Montgomery, K.5    Varma, S.6
  • 40
    • 61349148145 scopus 로고    scopus 로고
    • The macrophage colony-stimulating factor 1 response signature in breast carcinoma
    • Beck AH, Espinosa I, Edris B, Li R, Montgomery K, Zhu S, et al. The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res (2009) 15(3):778-87. doi:10.1158/1078-0432.CCR-08-1283
    • (2009) Clin Cancer Res , vol.15 , Issue.3 , pp. 778-787
    • Beck, A.H.1    Espinosa, I.2    Edris, B.3    Li, R.4    Montgomery, K.5    Zhu, S.6
  • 41
    • 85010198845 scopus 로고    scopus 로고
    • Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma
    • Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res (2017) 23(1):137-48. doi:10.1158/1078-0432.CCR-16-0870
    • (2017) Clin Cancer Res , vol.23 , Issue.1 , pp. 137-148
    • Kalbasi, A.1    Komar, C.2    Tooker, G.M.3    Liu, M.4    Lee, J.W.5    Gladney, W.L.6
  • 42
    • 84879850236 scopus 로고    scopus 로고
    • Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis
    • Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res (2013) 19(13):3404-15. doi:10.1158/1078-0432.CCR-13-0525
    • (2013) Clin Cancer Res , vol.19 , Issue.13 , pp. 3404-3415
    • Sanford, D.E.1    Belt, B.A.2    Panni, R.Z.3    Mayer, A.4    Deshpande, A.D.5    Carpenter, D.6
  • 43
    • 85011691504 scopus 로고    scopus 로고
    • Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma
    • Li X, Yao W, Yuan Y, Chen P, Li B, Li J, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut (2017) 66(1):157-67. doi:10.1136/gutjnl-2015-310514
    • (2017) Gut , vol.66 , Issue.1 , pp. 157-167
    • Li, X.1    Yao, W.2    Yuan, Y.3    Chen, P.4    Li, B.5    Li, J.6
  • 44
    • 84879085632 scopus 로고    scopus 로고
    • Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer
    • Pienta KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ, et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs (2013) 31(3):760-8. doi:10.1007/s10637-012-9869-8
    • (2013) Invest New Drugs , vol.31 , Issue.3 , pp. 760-768
    • Pienta, K.J.1    Machiels, J.P.2    Schrijvers, D.3    Alekseev, B.4    Shkolnik, M.5    Crabb, S.J.6
  • 45
    • 79952316203 scopus 로고    scopus 로고
    • Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region
    • Gilbert J, Lekstrom-Himes J, Donaldson D, Lee Y, Hu M, Xu J, et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am J Cardiol (2011) 107(6):906-11. doi:10.1016/j.amjcard.2010.11.005
    • (2011) Am J Cardiol , vol.107 , Issue.6 , pp. 906-911
    • Gilbert, J.1    Lekstrom-Himes, J.2    Donaldson, D.3    Lee, Y.4    Hu, M.5    Xu, J.6
  • 46
    • 84939483610 scopus 로고    scopus 로고
    • The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial
    • de Zeeuw D, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I, Mehling H, et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol (2015) 3(9):687-96. doi:10.1016/S2213-8587(15)00261-2
    • (2015) Lancet Diabetes Endocrinol , vol.3 , Issue.9 , pp. 687-696
    • de Zeeuw, D.1    Bekker, P.2    Henkel, E.3    Hasslacher, C.4    Gouni-Berthold, I.5    Mehling, H.6
  • 47
    • 4544276339 scopus 로고    scopus 로고
    • Expression of hypoxic-inducible factor 1alpha predicts metastasis-free survival after radiation therapy alone in stage IIIB cervical squamous cell carcinoma
    • Ishikawa H, Sakurai H, Hasegawa M, Mitsuhashi N, Takahashi M, Masuda N, et al. Expression of hypoxic-inducible factor 1alpha predicts metastasis-free survival after radiation therapy alone in stage IIIB cervical squamous cell carcinoma. Int J Radiat Oncol Biol Phys (2004) 60(2):513-21. doi:10.1016/j.ijrobp.2004.03.025
    • (2004) Int J Radiat Oncol Biol Phys , vol.60 , Issue.2 , pp. 513-521
    • Ishikawa, H.1    Sakurai, H.2    Hasegawa, M.3    Mitsuhashi, N.4    Takahashi, M.5    Masuda, N.6
  • 48
    • 0035300410 scopus 로고    scopus 로고
    • Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer
    • Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, et al. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res (2001) 61(7):2911-6.
    • (2001) Cancer Res , vol.61 , Issue.7 , pp. 2911-2916
    • Aebersold, D.M.1    Burri, P.2    Beer, K.T.3    Laissue, J.4    Djonov, V.5    Greiner, R.H.6
  • 49
    • 2342611976 scopus 로고    scopus 로고
    • Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules
    • Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell (2004) 5(5):429-41. doi:10.1016/S1535-6108(04)00115-1
    • (2004) Cancer Cell , vol.5 , Issue.5 , pp. 429-441
    • Moeller, B.J.1    Cao, Y.2    Li, C.Y.3    Dewhirst, M.W.4
  • 50
    • 84909995987 scopus 로고    scopus 로고
    • Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization
    • Kim YH, Yoo KC, Cui YH, Uddin N, Lim EJ, Kim MJ, et al. Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett (2014) 354(1):132-41. doi:10.1016/j.canlet.2014.07.048
    • (2014) Cancer Lett , vol.354 , Issue.1 , pp. 132-141
    • Kim, Y.H.1    Yoo, K.C.2    Cui, Y.H.3    Uddin, N.4    Lim, E.J.5    Kim, M.J.6
  • 51
    • 84899753178 scopus 로고    scopus 로고
    • PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation
    • Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med (2014) 211(5):781-90. doi:10.1084/jem.20131916
    • (2014) J Exp Med , vol.211 , Issue.5 , pp. 781-790
    • Noman, M.Z.1    Desantis, G.2    Janji, B.3    Hasmim, M.4    Karray, S.5    Dessen, P.6
  • 52
    • 84893872087 scopus 로고    scopus 로고
    • A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells
    • Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res (2014) 74(3):665-74. doi:10.1158/0008-5472.CAN-13-0992
    • (2014) Cancer Res , vol.74 , Issue.3 , pp. 665-674
    • Barsoum, I.B.1    Smallwood, C.A.2    Siemens, D.R.3    Graham, C.H.4
  • 53
    • 79960393113 scopus 로고    scopus 로고
    • Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells
    • Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature (2011) 475(7355):226-30. doi:10.1038/nature10169
    • (2011) Nature , vol.475 , Issue.7355 , pp. 226-230
    • Facciabene, A.1    Peng, X.2    Hagemann, I.S.3    Balint, K.4    Barchetti, A.5    Wang, L.P.6
  • 54
    • 77957350018 scopus 로고    scopus 로고
    • Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression
    • Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res (2010) 70(19):7465-75. doi:10.1158/0008-5472.CAN-10-1439
    • (2010) Cancer Res , vol.70 , Issue.19 , pp. 7465-7475
    • Doedens, A.L.1    Stockmann, C.2    Rubinstein, M.P.3    Liao, D.4    Zhang, N.5    DeNardo, D.G.6
  • 55
    • 84892747845 scopus 로고    scopus 로고
    • Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population
    • Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res (2014) 74(1):24-30. doi:10.1158/0008-5472.CAN-13-1196
    • (2014) Cancer Res , vol.74 , Issue.1 , pp. 24-30
    • Laoui, D.1    Van Overmeire, E.2    Di Conza, G.3    Aldeni, C.4    Keirsse, J.5    Morias, Y.6
  • 56
    • 78149330949 scopus 로고    scopus 로고
    • HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment
    • Corzo CA, Thomas C, Lily L, Matthew JC, Je-In Y, Pingyan C, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med (2010) 207(11):2439-53. doi:10.1084/jem.20100587
    • (2010) J Exp Med , vol.207 , Issue.11 , pp. 2439-2453
    • Corzo, C.A.1    Thomas, C.2    Lily, L.3    Matthew, J.C.4    Je-In, Y.5    Pingyan, C.6
  • 57
    • 84865130953 scopus 로고    scopus 로고
    • Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche
    • Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res (2012) 72(16):3906-11. doi:10.1158/0008-5472.CAN-11-3873
    • (2012) Cancer Res , vol.72 , Issue.16 , pp. 3906-3911
    • Sceneay, J.1    Chow, M.T.2    Chen, A.3    Halse, H.M.4    Wong, C.S.5    Andrews, D.M.6
  • 58
    • 0032581277 scopus 로고    scopus 로고
    • Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis
    • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature (1998) 394(6692):485-90. doi:10.1038/28867
    • (1998) Nature , vol.394 , Issue.6692 , pp. 485-490
    • Carmeliet, P.1    Dor, Y.2    Herbert, J.M.3    Fukumura, D.4    Brusselmans, K.5    Dewerchin, M.6
  • 59
    • 39849102836 scopus 로고    scopus 로고
    • HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion
    • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell (2008) 13(3):206-20. doi:10.1016/j.ccr.2008.01.034
    • (2008) Cancer Cell , vol.13 , Issue.3 , pp. 206-220
    • Du, R.1    Lu, K.V.2    Petritsch, C.3    Liu, P.4    Ganss, R.5    Passegué, E.6
  • 60
    • 84894299576 scopus 로고    scopus 로고
    • Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8
    • Ahn GO, Seita J, Hong BJ, Kim YE, Bok S, Lee CJ, et al. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. Proc Natl Acad Sci U S A (2014) 111(7):2698-703. doi:10.1073/pnas.1320243111
    • (2014) Proc Natl Acad Sci U S A , vol.111 , Issue.7 , pp. 2698-2703
    • Ahn, G.O.1    Seita, J.2    Hong, B.J.3    Kim, Y.E.4    Bok, S.5    Lee, C.J.6
  • 61
    • 1642457334 scopus 로고    scopus 로고
    • Differential regulation of VEGF, HIF1alpha and angiopoietin-1,-2 and-4 by hypoxia and ionizing radiation in human glioblastoma
    • Lund EL, Høg A, Olsen MW, Hansen LT, Engelholm SA, Kristjansen PE. Differential regulation of VEGF, HIF1alpha and angiopoietin-1,-2 and-4 by hypoxia and ionizing radiation in human glioblastoma. Int J Cancer (2004) 108(6):833-8. doi:10.1002/ijc.11662
    • (2004) Int J Cancer , vol.108 , Issue.6 , pp. 833-838
    • Lund, E.L.1    Høg, A.2    Olsen, M.W.3    Hansen, L.T.4    Engelholm, S.A.5    Kristjansen, P.E.6
  • 62
    • 0031039243 scopus 로고    scopus 로고
    • The biology of vascular endothelial growth factor
    • Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev (1997) 18(1):4-25. doi:10.1210/edrv.18.1.0287
    • (1997) Endocr Rev , vol.18 , Issue.1 , pp. 4-25
    • Ferrara, N.1    Davis-Smyth, T.2
  • 63
    • 84872593848 scopus 로고    scopus 로고
    • VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer
    • Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res (2013) 73(2):539-49. doi:10.1158/0008-5472.CAN-12-2325
    • (2013) Cancer Res , vol.73 , Issue.2 , pp. 539-549
    • Terme, M.1    Pernot, S.2    Marcheteau, E.3    Sandoval, F.4    Benhamouda, N.5    Colussi, O.6
  • 64
    • 74249123434 scopus 로고    scopus 로고
    • VEGFR2 is selectively expressed by FOXP3high CD4+ Treg
    • Suzuki H, Onishi H, Wada J, Yamasaki A, Tanaka H, Nakano K, et al. VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. Eur J Immunol (2010) 40(1):197-203. doi:10.1002/eji.200939887
    • (2010) Eur J Immunol , vol.40 , Issue.1 , pp. 197-203
    • Suzuki, H.1    Onishi, H.2    Wada, J.3    Yamasaki, A.4    Tanaka, H.5    Nakano, K.6
  • 65
    • 34547106845 scopus 로고    scopus 로고
    • Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF
    • Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L, et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood (2007) 110(2):624-31. doi:10.1182/blood-2007-01-065714
    • (2007) Blood , vol.110 , Issue.2 , pp. 624-631
    • Huang, Y.1    Chen, X.2    Dikov, M.M.3    Novitskiy, S.V.4    Mosse, C.A.5    Yang, L.6
  • 66
    • 0032400862 scopus 로고    scopus 로고
    • Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo
    • Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood (1998) 92(11):4150-66.
    • (1998) Blood , vol.92 , Issue.11 , pp. 4150-4166
    • Gabrilovich, D.1    Ishida, T.2    Oyama, T.3    Ran, S.4    Kravtsov, V.5    Nadaf, S.6
  • 67
    • 85011308775 scopus 로고    scopus 로고
    • Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells
    • Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res (2017) 23(2):587-99. doi:10.1158/1078-0432.CCR-16-0387
    • (2017) Clin Cancer Res , vol.23 , Issue.2 , pp. 587-599
    • Horikawa, N.1    Abiko, K.2    Matsumura, N.3    Hamanishi, J.4    Baba, T.5    Yamaguchi, K.6
  • 68
    • 83955164291 scopus 로고    scopus 로고
    • VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2
    • Ziogas AC, Gavalas NG, Tsiatas M, Tsitsilonis O, Politi E, Terpos E, et al. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. Int J Cancer (2012) 130(4):857-64. doi:10.1002/ijc.26094
    • (2012) Int J Cancer , vol.130 , Issue.4 , pp. 857-864
    • Ziogas, A.C.1    Gavalas, N.G.2    Tsiatas, M.3    Tsitsilonis, O.4    Politi, E.5    Terpos, E.6
  • 69
    • 84922713971 scopus 로고    scopus 로고
    • VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors
    • Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med (2015) 212(2):139-48. doi:10.1084/jem.20140559
    • (2015) J Exp Med , vol.212 , Issue.2 , pp. 139-148
    • Voron, T.1    Colussi, O.2    Marcheteau, E.3    Pernot, S.4    Nizard, M.5    Pointet, A.L.6
  • 70
    • 84902124970 scopus 로고    scopus 로고
    • Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors
    • Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med (2014) 20(6):607-15. doi:10.1038/nm.3541
    • (2014) Nat Med , vol.20 , Issue.6 , pp. 607-615
    • Motz, G.T.1    Santoro, S.P.2    Wang, L.P.3    Garrabrant, T.4    Lastra, R.R.5    Hagemann, I.S.6
  • 71
    • 0033564974 scopus 로고    scopus 로고
    • Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation
    • Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res (1999) 59(14):3374-8.
    • (1999) Cancer Res , vol.59 , Issue.14 , pp. 3374-3378
    • Gorski, D.H.1    Beckett, M.A.2    Jaskowiak, N.T.3    Calvin, D.P.4    Mauceri, H.J.5    Salloum, R.M.6
  • 72
    • 0035866771 scopus 로고    scopus 로고
    • Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy
    • Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H, et al. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res (2001) 61(6):2413-9.
    • (2001) Cancer Res , vol.61 , Issue.6 , pp. 2413-2419
    • Geng, L.1    Donnelly, E.2    McMahon, G.3    Lin, P.C.4    Sierra-Rivera, E.5    Oshinka, H.6
  • 73
    • 84971247500 scopus 로고    scopus 로고
    • Immunosuppressive activities of adenosine in cancer
    • Allard B, Beavis PA, Darcy PK, Stagg J. Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol (2016) 29:7-16. doi:10.1016/j.coph.2016.04.001
    • (2016) Curr Opin Pharmacol , vol.29 , pp. 7-16
    • Allard, B.1    Beavis, P.A.2    Darcy, P.K.3    Stagg, J.4
  • 74
    • 2542432162 scopus 로고    scopus 로고
    • Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors
    • Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol (2004) 22:657-82. doi:10.1146/annurev.immunol.22.012703.104731
    • (2004) Annu Rev Immunol , vol.22 , pp. 657-682
    • Sitkovsky, M.V.1    Lukashev, D.2    Apasov, S.3    Kojima, H.4    Koshiba, M.5    Caldwell, C.6
  • 75
    • 84876753532 scopus 로고    scopus 로고
    • Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells
    • Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity (2013) 38(4):729-41. doi:10.1016/j.immuni.2013.03.003
    • (2013) Immunity , vol.38 , Issue.4 , pp. 729-741
    • Ma, Y.1    Adjemian, S.2    Mattarollo, S.R.3    Yamazaki, T.4    Aymeric, L.5    Yang, H.6
  • 76
    • 84874280249 scopus 로고    scopus 로고
    • ATP release and purinergic signaling in NLRP3 inflammasome activation
    • Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol (2013) 3:414. doi:10.3389/fimmu.2012.00414
    • (2013) Front Immunol , vol.3 , pp. 414
    • Gombault, A.1    Baron, L.2    Couillin, I.3
  • 77
    • 79952280438 scopus 로고    scopus 로고
    • Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy
    • Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev (2011) 30(1):61-9. doi:10.1007/s10555-011-9273-4
    • (2011) Cancer Metastasis Rev , vol.30 , Issue.1 , pp. 61-69
    • Kepp, O.1    Galluzzi, L.2    Martins, I.3    Schlemmer, F.4    Adjemian, S.5    Michaud, M.6
  • 78
    • 76249128304 scopus 로고    scopus 로고
    • Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity
    • Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res (2010) 70(3):855-8. doi:10.1158/0008-5472.CAN-09-3566
    • (2010) Cancer Res , vol.70 , Issue.3 , pp. 855-858
    • Aymeric, L.1    Apetoh, L.2    Ghiringhelli, F.3    Tesniere, A.4    Martins, I.5    Kroemer, G.6
  • 79
    • 79955960780 scopus 로고    scopus 로고
    • Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity
    • Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol (2011) 61:301-32. doi:10.1016/B978-0-12-385526-8.00010-2
    • (2011) Adv Pharmacol , vol.61 , pp. 301-332
    • Deaglio, S.1    Robson, S.C.2
  • 80
    • 40349110970 scopus 로고    scopus 로고
    • Suppression of inflammatory and immune responses by the A(2A) adenosine receptor: an introduction
    • Palmer TM, Trevethick MA. Suppression of inflammatory and immune responses by the A(2A) adenosine receptor: an introduction. Br J Pharmacol (2008) 153(Suppl 1):S27-34. doi:10.1038/sj.bjp.0707524
    • (2008) Br J Pharmacol , vol.153 , pp. S27-S34
    • Palmer, T.M.1    Trevethick, M.A.2
  • 81
    • 84871299189 scopus 로고    scopus 로고
    • The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway
    • Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol (2012) 3:190. doi:10.3389/fimmu.2012.00190
    • (2012) Front Immunol , vol.3 , pp. 190
    • Ohta, A.1    Kini, R.2    Ohta, A.3    Subramanian, M.4    Madasu, M.5    Sitkovsky, M.6
  • 82
    • 84918577973 scopus 로고    scopus 로고
    • Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment
    • Cekic C, Day YJ, Sag D, Linden J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res (2014) 74(24):7250-9. doi:10.1158/0008-5472.CAN-13-3583
    • (2014) Cancer Res , vol.74 , Issue.24 , pp. 7250-7259
    • Cekic, C.1    Day, Y.J.2    Sag, D.3    Linden, J.4
  • 83
    • 67649804934 scopus 로고    scopus 로고
    • Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells
    • Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X, et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci U S A (2009) 106(26):10684-9. doi:10.1073/pnas.0901326106
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.26 , pp. 10684-10689
    • Ahmad, A.1    Ahmad, S.2    Glover, L.3    Miller, S.M.4    Shannon, J.M.5    Guo, X.6
  • 84
    • 84879705407 scopus 로고    scopus 로고
    • CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer
    • Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A (2013) 110(27):11091-6. doi:10.1073/pnas.1222251110
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.27 , pp. 11091-11096
    • Loi, S.1    Pommey, S.2    Haibe-Kains, B.3    Beavis, P.A.4    Darcy, P.K.5    Smyth, M.J.6
  • 85
    • 84875590401 scopus 로고    scopus 로고
    • Expression and clinical significance of CD73 and hypoxia-inducible factor-1alpha in gastric carcinoma
    • Lu XX, Chen YT, Feng B, Mao XB, Yu B, Chu XY. Expression and clinical significance of CD73 and hypoxia-inducible factor-1alpha in gastric carcinoma. World J Gastroenterol (2013) 19(12):1912-8. doi:10.3748/wjg.v19.i12.1912
    • (2013) World J Gastroenterol , vol.19 , Issue.12 , pp. 1912-1918
    • Lu, X.X.1    Chen, Y.T.2    Feng, B.3    Mao, X.B.4    Yu, B.5    Chu, X.Y.6
  • 86
    • 84863722239 scopus 로고    scopus 로고
    • High expression of CD73 as a poor prognostic biomarker in human colorectal cancer
    • Wu XR, He XS, Chen YF, Yuan RX, Zeng Y, Lian L, et al. High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J Surg Oncol (2012) 106(2):130-7. doi:10.1002/jso.23056
    • (2012) J Surg Oncol , vol.106 , Issue.2 , pp. 130-137
    • Wu, X.R.1    He, X.S.2    Chen, Y.F.3    Yuan, R.X.4    Zeng, Y.5    Lian, L.6
  • 87
    • 84896702712 scopus 로고    scopus 로고
    • NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer
    • Xiong L, Wen Y, Miao X, Yang Z. NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res (2014) 355(2):365-74. doi:10.1007/s00441-013-1752-1
    • (2014) Cell Tissue Res , vol.355 , Issue.2 , pp. 365-374
    • Xiong, L.1    Wen, Y.2    Miao, X.3    Yang, Z.4
  • 88
    • 79954576658 scopus 로고    scopus 로고
    • CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis
    • Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res (2011) 71(8):2892-900. doi:10.1158/0008-5472.CAN-10-4246
    • (2011) Cancer Res , vol.71 , Issue.8 , pp. 2892-2900
    • Stagg, J.1    Divisekera, U.2    Duret, H.3    Sparwasser, T.4    Teng, M.W.5    Darcy, P.K.6
  • 89
    • 84937874129 scopus 로고    scopus 로고
    • Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity
    • Bastid J, Regairaz A, Bonnefoy N, Déjou C, Giustiniani J, Laheurte C, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res (2015) 3(3):254-65. doi:10.1158/2326-6066.CIR-14-0018
    • (2015) Cancer Immunol Res , vol.3 , Issue.3 , pp. 254-265
    • Bastid, J.1    Regairaz, A.2    Bonnefoy, N.3    Déjou, C.4    Giustiniani, J.5    Laheurte, C.6
  • 90
    • 84928587091 scopus 로고    scopus 로고
    • Extracellular adenosine metabolism in immune cells in melanoma
    • Umansky V, Shevchenko I, Bazhin AV, Utikal J. Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunol Immunother (2014) 63(10):1073-80. doi:10.1007/s00262-014-1553-8
    • (2014) Cancer Immunol Immunother , vol.63 , Issue.10 , pp. 1073-1080
    • Umansky, V.1    Shevchenko, I.2    Bazhin, A.V.3    Utikal, J.4
  • 91
    • 77951234655 scopus 로고    scopus 로고
    • Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells
    • Mandapathil M, Hilldorfer B, Szczepanski MJ, Czystowska M, Szajnik M, Ren J, et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem (2010) 285(10):7176-86. doi:10.1074/jbc.M109.047423
    • (2010) J Biol Chem , vol.285 , Issue.10 , pp. 7176-7186
    • Mandapathil, M.1    Hilldorfer, B.2    Szczepanski, M.J.3    Czystowska, M.4    Szajnik, M.5    Ren, J.6
  • 92
    • 84870480855 scopus 로고    scopus 로고
    • Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling
    • Knapp K, Zebisch M, Pippel J, El-Tayeb A, Müller CE, Sträter N. Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure (2012) 20(12):2161-73. doi:10.1016/j.str.2012.10.001
    • (2012) Structure , vol.20 , Issue.12 , pp. 2161-2173
    • Knapp, K.1    Zebisch, M.2    Pippel, J.3    El-Tayeb, A.4    Müller, C.E.5    Sträter, N.6
  • 93
    • 34047250594 scopus 로고    scopus 로고
    • Ecto-5'-nucleotidase: structure function relationships
    • Strater N. Ecto-5'-nucleotidase: structure function relationships. Purinergic Signal (2006) 2(2):343-50. doi:10.1007/s11302-006-9000-8
    • (2006) Purinergic Signal , vol.2 , Issue.2 , pp. 343-350
    • Strater, N.1
  • 94
    • 82255161799 scopus 로고    scopus 로고
    • The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg)
    • Whiteside TL, Mandapathil M, Schuler P. The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem (2011) 18(34):5217-23. doi:10.2174/092986711798184334
    • (2011) Curr Med Chem , vol.18 , Issue.34 , pp. 5217-5223
    • Whiteside, T.L.1    Mandapathil, M.2    Schuler, P.3
  • 95
    • 66449110381 scopus 로고    scopus 로고
    • Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39
    • Hyman MC, Petrovic-Djergovic D, Visovatti SH, Liao H, Yanamadala S, Bouïs D, et al. Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest (2009) 119(5):1136-49. doi:10.1172/JCI36433
    • (2009) J Clin Invest , vol.119 , Issue.5 , pp. 1136-1149
    • Hyman, M.C.1    Petrovic-Djergovic, D.2    Visovatti, S.H.3    Liao, H.4    Yanamadala, S.5    Bouïs, D.6
  • 96
    • 77953853994 scopus 로고    scopus 로고
    • Purinergic signaling: a fundamental mechanism in neutrophil activation
    • Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, et al. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal (2010) 3(125):ra45. doi:10.1126/scisignal.2000549
    • (2010) Sci Signal , vol.3 , Issue.125
    • Chen, Y.1    Yao, Y.2    Sumi, Y.3    Li, A.4    To, U.K.5    Elkhal, A.6
  • 97
    • 82755162136 scopus 로고    scopus 로고
    • Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells
    • Ryzhov S, Novitskiy SV, Goldstein AE, Biktasova A, Blackburn MR, Biaggioni I, et al. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J Immunol (2011) 187(11):6120-9. doi:10.4049/jimmunol.1101225
    • (2011) J Immunol , vol.187 , Issue.11 , pp. 6120-6129
    • Ryzhov, S.1    Novitskiy, S.V.2    Goldstein, A.E.3    Biktasova, A.4    Blackburn, M.R.5    Biaggioni, I.6
  • 98
    • 84886432843 scopus 로고    scopus 로고
    • Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs
    • Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res (2013) 19(20):5626-35. doi:10.1158/1078-0432.CCR-13-0545
    • (2013) Clin Cancer Res , vol.19 , Issue.20 , pp. 5626-5635
    • Allard, B.1    Pommey, S.2    Smyth, M.J.3    Stagg, J.4
  • 99
    • 84962273457 scopus 로고    scopus 로고
    • Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses
    • Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, et al. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res (2015) 3(5):506-17. doi:10.1158/2326-6066.CIR-14-0211
    • (2015) Cancer Immunol Res , vol.3 , Issue.5 , pp. 506-517
    • Beavis, P.A.1    Milenkovski, N.2    Henderson, M.A.3    John, L.B.4    Allard, B.5    Loi, S.6
  • 100
    • 84913604670 scopus 로고    scopus 로고
    • Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model
    • Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res (2014) 4(2):172-81.
    • (2014) Am J Cancer Res , vol.4 , Issue.2 , pp. 172-181
    • Iannone, R.1    Miele, L.2    Maiolino, P.3    Pinto, A.4    Morello, S.5
  • 101
    • 84971287745 scopus 로고    scopus 로고
    • Adenosine regulates radiation therapy-induced anti-tumor immunity
    • Wennerberg E, Kawashima N, Demaria S. Adenosine regulates radiation therapy-induced anti-tumor immunity. J Immunother Cancer (2015) 3(Suppl 2):378. doi:10.1186/2051-1426-3-S2-P378
    • (2015) J Immunother Cancer , vol.3 , pp. 378
    • Wennerberg, E.1    Kawashima, N.2    Demaria, S.3
  • 102
    • 33646164362 scopus 로고    scopus 로고
    • Transforming growth factor-beta regulation of immune responses
    • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol (2006) 24:99-146. doi:10.1146/annurev.immunol.24.021605.090737
    • (2006) Annu Rev Immunol , vol.24 , pp. 99-146
    • Li, M.O.1    Wan, Y.Y.2    Sanjabi, S.3    Robertson, A.K.4    Flavell, R.A.5
  • 103
    • 0031944290 scopus 로고    scopus 로고
    • Regulation of immune responses by TGF-beta
    • Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol (1998) 16:137-61. doi:10.1146/annurev.immunol.16.1.137
    • (1998) Annu Rev Immunol , vol.16 , pp. 137-161
    • Letterio, J.J.1    Roberts, A.B.2
  • 104
    • 50949128658 scopus 로고    scopus 로고
    • Cell intrinsic TGF-beta 1 regulation of B cells
    • Gros MJ, Naquet P, Guinamard RR. Cell intrinsic TGF-beta 1 regulation of B cells. J Immunol (2008) 180(12):8153-8. doi:10.4049/jimmunol.180.12.8153
    • (2008) J Immunol , vol.180 , Issue.12 , pp. 8153-8158
    • Gros, M.J.1    Naquet, P.2    Guinamard, R.R.3
  • 105
    • 34248592104 scopus 로고    scopus 로고
    • T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1-and Th17-cell differentiation
    • Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1-and Th17-cell differentiation. Immunity (2007) 26(5):579-91. doi:10.1016/j.immuni.2007.03.014
    • (2007) Immunity , vol.26 , Issue.5 , pp. 579-591
    • Li, M.O.1    Wan, Y.Y.2    Flavell, R.A.3
  • 106
    • 34249678653 scopus 로고    scopus 로고
    • TGFbeta signalling in control of T-cell-mediated self-reactivity
    • Rubtsov YP, Rudensky AY. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol (2007) 7(6):443-53. doi:10.1038/nri2095
    • (2007) Nat Rev Immunol , vol.7 , Issue.6 , pp. 443-453
    • Rubtsov, Y.P.1    Rudensky, A.Y.2
  • 107
    • 0026799402 scopus 로고
    • Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease
    • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature (1992) 359(6397):693-9. doi:10.1038/359693a0
    • (1992) Nature , vol.359 , Issue.6397 , pp. 693-699
    • Shull, M.M.1    Ormsby, I.2    Kier, A.B.3    Pawlowski, S.4    Diebold, R.J.5    Yin, M.6
  • 108
    • 0035876913 scopus 로고    scopus 로고
    • A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood
    • Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol (2001) 166(12):7282-9. doi:10.4049/jimmunol.166.12.7282
    • (2001) J Immunol , vol.166 , Issue.12 , pp. 7282-7289
    • Yamagiwa, S.1    Gray, J.D.2    Hashimoto, S.3    Horwitz, D.A.4
  • 109
    • 0348223787 scopus 로고    scopus 로고
    • Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3
    • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med (2003) 198(12):1875-86. doi:10.1084/jem.20030152
    • (2003) J Exp Med , vol.198 , Issue.12 , pp. 1875-1886
    • Chen, W.1    Jin, W.2    Hardegen, N.3    Lei, K.J.4    Li, L.5    Marinos, N.6
  • 110
    • 27644457376 scopus 로고    scopus 로고
    • TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance
    • Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell (2005) 8(5):369-80. doi:10.1016/j.ccr.2005.10.012
    • (2005) Cancer Cell , vol.8 , Issue.5 , pp. 369-380
    • Thomas, D.A.1    Massague, J.2
  • 111
  • 112
    • 84858795377 scopus 로고    scopus 로고
    • Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression
    • Chalmin F, Mignot G, Bruchard M, Chevriaux A, Végran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity (2012) 36(3):362-73. doi:10.1016/j.immuni.2011.12.019
    • (2012) Immunity , vol.36 , Issue.3 , pp. 362-373
    • Chalmin, F.1    Mignot, G.2    Bruchard, M.3    Chevriaux, A.4    Végran, F.5    Hichami, A.6
  • 113
    • 69249222379 scopus 로고    scopus 로고
    • Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN
    • Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell (2009) 16(3):183-94. doi:10.1016/j.ccr.2009.06.017
    • (2009) Cancer Cell , vol.16 , Issue.3 , pp. 183-194
    • Fridlender, Z.G.1    Sun, J.2    Kim, S.3    Kapoor, V.4    Cheng, G.5    Ling, L.6
  • 114
    • 78649402748 scopus 로고    scopus 로고
    • Transforming growth factor beta signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity
    • Tanaka H, Shinto O, Yashiro M, Yamazoe S, Iwauchi T, Muguruma K, et al. Transforming growth factor beta signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol Rep (2010) 24(6):1637-43. doi:10.3892/or_00001028
    • (2010) Oncol Rep , vol.24 , Issue.6 , pp. 1637-1643
    • Tanaka, H.1    Shinto, O.2    Yashiro, M.3    Yamazoe, S.4    Iwauchi, T.5    Muguruma, K.6
  • 115
    • 84971384305 scopus 로고    scopus 로고
    • TGF-beta signalling in tumour associated macrophages
    • Gratchev A. TGF-beta signalling in tumour associated macrophages. Immunobiology (2017) 222(1):75-81. doi:10.1016/j.imbio.2015.11.016
    • (2017) Immunobiology , vol.222 , Issue.1 , pp. 75-81
    • Gratchev, A.1
  • 116
    • 0036839143 scopus 로고    scopus 로고
    • Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol (2002) 23(11):549-55. doi:10.1016/S1471-4906(02)02302-5
    • (2002) Trends Immunol , vol.23 , Issue.11 , pp. 549-555
    • Mantovani, A.1    Sozzani, S.2    Locati, M.3    Allavena, P.4    Sica, A.5
  • 117
    • 84999048233 scopus 로고    scopus 로고
    • Tumor-associated neutrophils display a distinct N1 profile following TGFbeta modulation: a transcriptomics analysis of pro-vs. antitumor TANs
    • Shaul ME, Levy L, Sun J, Mishalian I, Singhal S, Kapoor V, et al. Tumor-associated neutrophils display a distinct N1 profile following TGFbeta modulation: a transcriptomics analysis of pro-vs. antitumor TANs. Oncoimmunology (2016) 5(11):e1232221. doi:10.1080/2162402X.2016.1232221
    • (2016) Oncoimmunology , vol.5 , Issue.11
    • Shaul, M.E.1    Levy, L.2    Sun, J.3    Mishalian, I.4    Singhal, S.5    Kapoor, V.6
  • 118
    • 0028177037 scopus 로고
    • Transforming growth factor-beta activation in irradiated murine mammary gland
    • Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA. Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest (1994) 93(2):892-9. doi:10.1172/JCI117045
    • (1994) J Clin Invest , vol.93 , Issue.2 , pp. 892-899
    • Barcellos-Hoff, M.H.1    Derynck, R.2    Tsang, M.L.3    Weatherbee, J.A.4
  • 119
    • 33845358508 scopus 로고    scopus 로고
    • Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species
    • Jobling MF, Mott JD, Finnegan MT, Jurukovski V, Erickson AC, Walian PJ, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res (2006) 166(6):839-48. doi:10.1667/RR0695.1
    • (2006) Radiat Res , vol.166 , Issue.6 , pp. 839-848
    • Jobling, M.F.1    Mott, J.D.2    Finnegan, M.T.3    Jurukovski, V.4    Erickson, A.C.5    Walian, P.J.6
  • 120
    • 84929366910 scopus 로고    scopus 로고
    • TGFbeta is a master regulator of radiation therapy-induced antitumor immunity
    • Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, et al. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res (2015) 75(11):2232-42. doi:10.1158/0008-5472.CAN-14-3511
    • (2015) Cancer Res , vol.75 , Issue.11 , pp. 2232-2242
    • Vanpouille-Box, C.1    Diamond, J.M.2    Pilones, K.A.3    Zavadil, J.4    Babb, J.S.5    Formenti, S.C.6
  • 121
    • 84907486895 scopus 로고    scopus 로고
    • Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade
    • Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res (2014) 74(19):5458-68. doi:10.1158/0008-5472.CAN-14-1258
    • (2014) Cancer Res , vol.74 , Issue.19 , pp. 5458-5468
    • Dovedi, S.J.1    Adlard, A.L.2    Lipowska-Bhalla, G.3    McKenna, C.4    Jones, S.5    Cheadle, E.J.6
  • 122
    • 84859128199 scopus 로고    scopus 로고
    • Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape
    • Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med (2012) 4(127):127ra37. doi:10.1126/scitranslmed.3003689
    • (2012) Sci Transl Med , vol.4 , Issue.127
    • Taube, J.M.1    Anders, R.A.2    Young, G.D.3    Xu, H.4    Sharma, R.5    McMiller, T.L.6
  • 123
    • 84961695923 scopus 로고    scopus 로고
    • PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma
    • Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer (2016) 139(2):396-403. doi:10.1002/ijc.30077
    • (2016) Int J Cancer , vol.139 , Issue.2 , pp. 396-403
    • Ruf, M.1    Moch, H.2    Schraml, P.3
  • 124
    • 84997810104 scopus 로고    scopus 로고
    • Current clinical trials testing the combination of immunotherapy with radiotherapy
    • Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer (2016) 4:51. doi:10.1186/s40425-016-0156-7
    • (2016) J Immunother Cancer , vol.4 , pp. 51
    • Kang, J.1    Demaria, S.2    Formenti, S.3
  • 125
    • 84919475564 scopus 로고    scopus 로고
    • Combination of radiotherapy and immune checkpoint inhibitors
    • Pilones KA, Vanpouille-Box C, Demaria S. Combination of radiotherapy and immune checkpoint inhibitors. Semin Radiat Oncol (2015) 25(1):28-33. doi:10.1016/j.semradonc.2014.07.004
    • (2015) Semin Radiat Oncol , vol.25 , Issue.1 , pp. 28-33
    • Pilones, K.A.1    Vanpouille-Box, C.2    Demaria, S.3
  • 126
    • 84986253403 scopus 로고    scopus 로고
    • Trial watch: immunotherapy plus radiation therapy for oncological indications
    • Vacchelli E, Bloy N, Aranda F, Buqué A, Cremer I, Demaria S, et al. Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology (2016) 5(9):e1214790. doi:10.1080/2162402X.2016.1214790
    • (2016) Oncoimmunology , vol.5 , Issue.9
    • Vacchelli, E.1    Bloy, N.2    Aranda, F.3    Buqué, A.4    Cremer, I.5    Demaria, S.6
  • 127
    • 84964313298 scopus 로고    scopus 로고
    • Bevacizumab plus ipilimumab in patients with metastatic melanoma
    • Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res (2014) 2(7):632-42. doi:10.1158/2326-6066.CIR-14-0053
    • (2014) Cancer Immunol Res , vol.2 , Issue.7 , pp. 632-642
    • Hodi, F.S.1    Lawrence, D.2    Lezcano, C.3    Wu, X.4    Zhou, J.5    Sasada, T.6
  • 128
    • 84994097105 scopus 로고    scopus 로고
    • VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma
    • Wu X, Giobbie-Hurder A, Liao X, Lawrence D, McDermott D, Zhou J, et al. VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma. Cancer Immunol Res (2016) 4(10):858-68. doi:10.1158/2326-6066.CIR-16-0084
    • (2016) Cancer Immunol Res , vol.4 , Issue.10 , pp. 858-868
    • Wu, X.1    Giobbie-Hurder, A.2    Liao, X.3    Lawrence, D.4    McDermott, D.5    Zhou, J.6
  • 129
    • 85008352158 scopus 로고    scopus 로고
    • The VEGFR inhibitor cediranib improves the efficacy of fractionated radiotherapy in a colorectal cancer xenograft model
    • Melsens E, Verberckmoes B, Rosseel N, Vanhove C, Descamps B, Pattyn P, et al. The VEGFR inhibitor cediranib improves the efficacy of fractionated radiotherapy in a colorectal cancer xenograft model. Eur Surg Res (2016) 58(3-4):95-108. doi:10.1159/000452741
    • (2016) Eur Surg Res , vol.58 , Issue.3-4 , pp. 95-108
    • Melsens, E.1    Verberckmoes, B.2    Rosseel, N.3    Vanhove, C.4    Descamps, B.5    Pattyn, P.6
  • 130
    • 84961288435 scopus 로고    scopus 로고
    • First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma
    • Rodon J, Carducci MA, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, et al. First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res (2015) 21(3):553-60. doi:10.1158/1078-0432.CCR-14-1380
    • (2015) Clin Cancer Res , vol.21 , Issue.3 , pp. 553-560
    • Rodon, J.1    Carducci, M.A.2    Sepulveda-Sánchez, J.M.3    Azaro, A.4    Calvo, E.5    Seoane, J.6
  • 131
    • 84942370577 scopus 로고    scopus 로고
    • Cardiac safety of TGF-beta receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study
    • Kovacs RJ, Maldonado G, Azaro A, Fernández MS, Romero FL, Sepulveda-Sánchez JM, et al. Cardiac safety of TGF-beta receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc Toxicol (2015) 15(4):309-23. doi:10.1007/s12012-014-9297-4
    • (2015) Cardiovasc Toxicol , vol.15 , Issue.4 , pp. 309-323
    • Kovacs, R.J.1    Maldonado, G.2    Azaro, A.3    Fernández, M.S.4    Romero, F.L.5    Sepulveda-Sánchez, J.M.6
  • 132
    • 84897566294 scopus 로고    scopus 로고
    • Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma
    • Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One (2014) 9(3):e90353. doi:10.1371/journal.pone.0090353
    • (2014) PLoS One , vol.9 , Issue.3
    • Morris, J.C.1    Tan, A.R.2    Olencki, T.E.3    Shapiro, G.I.4    Dezube, B.J.5    Reiss, M.6
  • 133
    • 40049088602 scopus 로고    scopus 로고
    • The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages
    • Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol (2008) 66(1):1-9. doi:10.1016/j.critrevonc.2007.07.004
    • (2008) Crit Rev Oncol Hematol , vol.66 , Issue.1 , pp. 1-9
    • Allavena, P.1    Sica, A.2    Solinas, G.3    Porta, C.4    Mantovani, A.5
  • 134
    • 84938369565 scopus 로고    scopus 로고
    • Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor
    • Tap WD, Wainberg ZA, Anthony SP, Ibrahim PN, Zhang C, Healey JH, et al. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N Engl J Med (2015) 373(5):428-37. doi:10.1056/NEJMoa1411366
    • (2015) N Engl J Med , vol.373 , Issue.5 , pp. 428-437
    • Tap, W.D.1    Wainberg, Z.A.2    Anthony, S.P.3    Ibrahim, P.N.4    Zhang, C.5    Healey, J.H.6
  • 135
    • 84944463780 scopus 로고    scopus 로고
    • CD39: a complementary target to immune checkpoints to counteract tumor-mediated immunosuppression
    • Bonnefoy N, Bastid J, Alberici G, Bensussan A, Eliaou JF. CD39: a complementary target to immune checkpoints to counteract tumor-mediated immunosuppression. Oncoimmunology (2015) 4(5):e1003015. doi:10.1080/2162402X.2014.1003015
    • (2015) Oncoimmunology , vol.4 , Issue.5
    • Bonnefoy, N.1    Bastid, J.2    Alberici, G.3    Bensussan, A.4    Eliaou, J.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.