메뉴 건너뛰기




Volumn 143, Issue 707, 2017, Pages 2315-2339

Stochastic representations of model uncertainties at ECMWF: state of the art and future vision

(28)  Leutbecher, Martin a   Lock, Sarah Jane a   Ollinaho, Pirkka b   Lang, Simon T K a   Balsamo, Gianpaolo a   Bechtold, Peter a   Bonavita, Massimo a   Christensen, Hannah M c   Diamantakis, Michail a   Dutra, Emanuel a   English, Stephen a   Fisher, Michael a   Forbes, Richard M a   Goddard, Jacqueline a   Haiden, Thomas a   Hogan, Robin J a   Juricke, Stephan c   Lawrence, Heather a   MacLeod, Dave c   Magnusson, Linus a   more..


Author keywords

dynamical core; Earth system model; ensemble data assimilation; ensemble forecasts; model uncertainty; numerical weather prediction; stochastic parametrization; weak constraint 4D Var

Indexed keywords

COMPUTATIONAL EFFICIENCY; FORECASTING; STOCHASTIC SYSTEMS; UNCERTAINTY ANALYSIS; WEATHER FORECASTING;

EID: 85016942223     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.3094     Document Type: Review
Times cited : (211)

References (133)
  • 3
    • 84881300544 scopus 로고    scopus 로고
    • A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models
    • Augier P, Lindborg E. 2013. A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci. 70: 2293–2308.
    • (2013) J. Atmos. Sci. , vol.70 , pp. 2293-2308
    • Augier, P.1    Lindborg, E.2
  • 4
    • 84891759910 scopus 로고    scopus 로고
    • Representation of model error in a convective-scale ensemble prediction system
    • Baker L, Rudd A, Migliorini S, Bannister R. 2014. Representation of model error in a convective-scale ensemble prediction system. Nonlinear Processes Geophys. 21: 19–39.
    • (2014) Nonlinear Processes Geophys. , vol.21 , pp. 19-39
    • Baker, L.1    Rudd, A.2    Migliorini, S.3    Bannister, R.4
  • 6
    • 84940937976 scopus 로고    scopus 로고
    • The quiet revolution of numerical weather prediction
    • Bauer P, Thorpe A, Brunet G. 2015. The quiet revolution of numerical weather prediction. Nature 525: 47–55.
    • (2015) Nature , vol.525 , pp. 47-55
    • Bauer, P.1    Thorpe, A.2    Brunet, G.3
  • 8
    • 69849107882 scopus 로고    scopus 로고
    • A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system
    • Berner J, Shutts GJ, Leutbecher M, Palmer TN. 2009. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 66: 603–626.
    • (2009) J. Atmos. Sci. , vol.66 , pp. 603-626
    • Berner, J.1    Shutts, G.J.2    Leutbecher, M.3    Palmer, T.N.4
  • 9
    • 79954486545 scopus 로고    scopus 로고
    • Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations
    • Berner J, Ha SY, Hacker JP, Fournier A, Snyder C. 2011. Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Weather Rev. 139: 1972–1995. https://doi.org/10.1175/2010MWR3595.1.
    • (2011) Mon. Weather Rev. , vol.139 , pp. 1972-1995
    • Berner, J.1    Ha, S.Y.2    Hacker, J.P.3    Fournier, A.4    Snyder, C.5
  • 10
    • 84945149848 scopus 로고    scopus 로고
    • Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations
    • Berner J, Fossell KR, Ha SY, Hacker JP, Snyder C. 2015. Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Weather Rev. 143: 1295–1320. https://doi.org/10.1175/MWR-D-14-00091.1.
    • (2015) Mon. Weather Rev. , vol.143 , pp. 1295-1320
    • Berner, J.1    Fossell, K.R.2    Ha, S.Y.3    Hacker, J.P.4    Snyder, C.5
  • 13
    • 84865463957 scopus 로고    scopus 로고
    • Impact of stochastic physics in a convection-permitting ensemble
    • Bouttier F, Vié B, Nuissier O, Raynaud L. 2012. Impact of stochastic physics in a convection-permitting ensemble. Mon. Weather Rev. 140: 3706–3721. https://doi.org/10.1175/MWR-D-12-00031.1.
    • (2012) Mon. Weather Rev. , vol.140 , pp. 3706-3721
    • Bouttier, F.1    Vié, B.2    Nuissier, O.3    Raynaud, L.4
  • 14
    • 85020304363 scopus 로고    scopus 로고
    • On the diagnosis of model error statistics using weak-constraint data assimilation
    • Bowler NE. 2017. On the diagnosis of model error statistics using weak-constraint data assimilation. Q. J. R. Meteorol. Soc. 143: 1916–1928. doi:10.1002/qj.3051.
    • (2017) Q. J. R. Meteorol. Soc. , vol.143 , pp. 1916-1928
    • Bowler, N.E.1
  • 15
    • 57149133822 scopus 로고    scopus 로고
    • The benefits of multianalysis and poor man's ensembles
    • Bowler NE, Arribas A, Mylne KR. 2008a. The benefits of multianalysis and poor man's ensembles. Mon. Weather Rev. 136: 4113–4129.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 4113-4129
    • Bowler, N.E.1    Arribas, A.2    Mylne, K.R.3
  • 18
    • 84952298672 scopus 로고    scopus 로고
    • The forecast skill horizon
    • Buizza R, Leutbecher M. 2015. The forecast skill horizon. Q. J. R. Meteorol. Soc. 141: 3366–3382. https://doi.org/10.1002/qj.2619.
    • (2015) Q. J. R. Meteorol. Soc. , vol.141 , pp. 3366-3382
    • Buizza, R.1    Leutbecher, M.2
  • 19
    • 0033403384 scopus 로고    scopus 로고
    • Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
    • Buizza R, Miller M, Palmer TN. 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125: 2887–2908.
    • (1999) Q. J. R. Meteorol. Soc. , vol.125 , pp. 2887-2908
    • Buizza, R.1    Miller, M.2    Palmer, T.N.3
  • 20
    • 58049193006 scopus 로고    scopus 로고
    • Potential use of an ensemble of analyses in the ECMWF ensemble prediction system
    • Buizza R, Leutbecher M, Isaksen L. 2008. Potential use of an ensemble of analyses in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 134: 2051–2066.
    • (2008) Q. J. R. Meteorol. Soc. , vol.134 , pp. 2051-2066
    • Buizza, R.1    Leutbecher, M.2    Isaksen, L.3
  • 23
    • 85024376047 scopus 로고    scopus 로고
    • Introducing independent patterns into the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme
    • Christensen HM, Lock SJ, Moroz IM, Palmer TN. 2017. Introducing independent patterns into the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme. Q. J. R. Meteorol. Soc., doi:10.1002/qj.3075.
    • (2017) Q. J. R. Meteorol. Soc.
    • Christensen, H.M.1    Lock, S.J.2    Moroz, I.M.3    Palmer, T.N.4
  • 24
    • 0018697062 scopus 로고
    • Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations
    • Clark TL. 1979. Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations. J. Atmos. Sci. 36: 2191–2215.
    • (1979) J. Atmos. Sci. , vol.36 , pp. 2191-2215
    • Clark, T.L.1
  • 25
    • 84904621312 scopus 로고    scopus 로고
    • The Monge–Ampère trajectory correction for semi-Lagrangian schemes
    • Cossette JF, Smolarkiewicz PK, Charbonneau P. 2014. The Monge–Ampère trajectory correction for semi-Lagrangian schemes. J. Comput. Phys. 274: 208–229.
    • (2014) J. Comput. Phys. , vol.274 , pp. 208-229
    • Cossette, J.F.1    Smolarkiewicz, P.K.2    Charbonneau, P.3
  • 27
    • 84888049249 scopus 로고    scopus 로고
    • Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia
    • Davies L, Jakob C, May P, Kumar VV, Xie S. 2013. Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res. Atmos. 118: 11534–11545. doi:10.1002/jgrd.50645.
    • (2013) J. Geophys. Res. Atmos. , vol.118 , pp. 11534-11545
    • Davies, L.1    Jakob, C.2    May, P.3    Kumar, V.V.4    Xie, S.5
  • 30
    • 84956613862 scopus 로고    scopus 로고
    • Atmospheric–ocean coupled processes in the Madden–Julian oscillation
    • DeMott CA, Klingaman NP, Woolnough SJ. 2015. Atmospheric–ocean coupled processes in the Madden–Julian oscillation. Rev. Geophys. 53: 1099–1154. https://doi.org/10.1002/2014RG000478.
    • (2015) Rev. Geophys. , vol.53 , pp. 1099-1154
    • DeMott, C.A.1    Klingaman, N.P.2    Woolnough, S.J.3
  • 31
    • 0032791112 scopus 로고    scopus 로고
    • A reformulation of the background-error covariance in the ECMWF global data assimilation system
    • Derber J, Bouttier F. 1999. A reformulation of the background-error covariance in the ECMWF global data assimilation system. Tellus A 51: 195–221.
    • (1999) Tellus A , vol.51 , pp. 195-221
    • Derber, J.1    Bouttier, F.2
  • 33
    • 84986253528 scopus 로고    scopus 로고
    • Sensitivity of the ECMWF model to semi-Lagrangian departure point iterations
    • Diamantakis M, Magnusson L. 2016. Sensitivity of the ECMWF model to semi-Lagrangian departure point iterations. Mon. Weather Rev. 144: 3233–3250. https://doi.org/10.1175/MWR-D-15-0432.1.
    • (2016) Mon. Weather Rev. , vol.144 , pp. 3233-3250
    • Diamantakis, M.1    Magnusson, L.2
  • 34
    • 84903881705 scopus 로고    scopus 로고
    • Atmospheric predictability: Why butterflies are not of practical importance
    • Durran DR, Gingrich M. 2014. Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci. 71: 2476–2488.
    • (2014) J. Atmos. Sci. , vol.71 , pp. 2476-2488
    • Durran, D.R.1    Gingrich, M.2
  • 35
    • 80051819345 scopus 로고    scopus 로고
    • Explicitly stochastic parameterization of nonorographic gravity wave drag
    • Eckermann SD. 2011. Explicitly stochastic parameterization of nonorographic gravity wave drag. J. Atmos. Sci. 68: 1749–1765. https://doi.org/10.1175/2011JAS3684.1.
    • (2011) J. Atmos. Sci. , vol.68 , pp. 1749-1765
    • Eckermann, S.D.1
  • 36
    • 85029952448 scopus 로고    scopus 로고
    • (ed.), ECMWF Reading, UK., (accessed 19 July 2017)
    • ECMWF/WWRP. (ed.) 2016. In Proceedings of Workshop on Model Uncertainty. ECMWF: Reading, UK. www.ecmwf.int/en/elibrary/16551-ecmwf-wwrp-workshop-model-uncertainty-proceedings (accessed 19 July 2017).
    • (2016) Proceedings of Workshop on Model Uncertainty
  • 40
    • 79954633018 scopus 로고    scopus 로고
    • Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries
    • Gebhardt C, Theis S, Paulat M, Bouallégue ZB. 2011. Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res. 100: 168–177. https://doi.org/10.1016/j.atmosres.2010.12.008.
    • (2011) Atmos. Res. , vol.100 , pp. 168-177
    • Gebhardt, C.1    Theis, S.2    Paulat, M.3    Bouallégue, Z.B.4
  • 41
    • 0035998830 scopus 로고    scopus 로고
    • Nonseparable, stationary covariance functions for space–time data
    • Gneiting T. 2002. Nonseparable, stationary covariance functions for space–time data. J. Am. Stat. Assoc. 97: 590–600.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 590-600
    • Gneiting, T.1
  • 43
    • 0000588399 scopus 로고    scopus 로고
    • CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere
    • Grabowski WW, Smolarkiewicz PK. 1999. CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D 133: 171–178.
    • (1999) Physica D , vol.133 , pp. 171-178
    • Grabowski, W.W.1    Smolarkiewicz, P.K.2
  • 44
    • 85029923892 scopus 로고    scopus 로고
    • Use of high-density observations in precipitation verification
    • Haiden T, Duffy S. 2016. Use of high-density observations in precipitation verification. ECMWF Newsl. 147: 20–25.
    • (2016) ECMWF Newsl. , vol.147 , pp. 20-25
    • Haiden, T.1    Duffy, S.2
  • 46
    • 84899849573 scopus 로고    scopus 로고
    • Inducing tropical cyclones to undergo Brownian motion: A comparison between Itô and Stratonovich in a numerical weather prediction model
    • Hodyss D, McLay JG, Moskaitis J, Serra EA. 2014. Inducing tropical cyclones to undergo Brownian motion: A comparison between Itô and Stratonovich in a numerical weather prediction model. Mon. Weather Rev. 142: 1982–1996.
    • (2014) Mon. Weather Rev. , vol.142 , pp. 1982-1996
    • Hodyss, D.1    McLay, J.G.2    Moskaitis, J.3    Serra, E.A.4
  • 47
    • 85027949348 scopus 로고    scopus 로고
    • Mitigating errors in surface temperature forecasts using approximate radiation updates
    • Hogan RJ, Bozzo A. 2015. Mitigating errors in surface temperature forecasts using approximate radiation updates. J. Adv. Model. Earth Syst. 7: 836–853.
    • (2015) J. Adv. Model. Earth Syst. , vol.7 , pp. 836-853
    • Hogan, R.J.1    Bozzo, A.2
  • 48
    • 84926333700 scopus 로고    scopus 로고
    • Variational principles for stochastic fluid dynamics
    • Holm DD. 2015. Variational principles for stochastic fluid dynamics. Proc. R. Soc. A 471. https://doi.org/10.1098/rspa.2014.0963.
    • (2015) Proc. R. Soc. A , vol.471
    • Holm, D.D.1
  • 49
    • 85040911843 scopus 로고    scopus 로고
    • ECMWF Reading, UK. Operational implementation 16 November 2016., (accessed 19 July 2017)
    • IFS Documentation. 2016. IFS Documentation CY43R1. ECMWF: Reading, UK. Operational implementation: 16 November 2016. www.ecmwf.int/en/elibrary/17117-part-iv-physical-processes (accessed 19 July 2017).
    • (2016) IFS Documentation CY43R1
  • 50
    • 0141746129 scopus 로고    scopus 로고
    • Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state
    • Inness PM, Slingo JM, Guilyardi E, Cole J. 2003. Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Clim. 16: 365–382.
    • (2003) J. Clim. , vol.16 , pp. 365-382
    • Inness, P.M.1    Slingo, J.M.2    Guilyardi, E.3    Cole, J.4
  • 52
    • 79954630987 scopus 로고    scopus 로고
    • Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting
    • Iversen T, Deckmyn A, Santos C, Sattler K, Bremnes JB, Feddersen H, Frogner IL. 2011. Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting. Tellus A 63: 513–530. https://doi.org/10.1111/j.1600-0870.2010.00507.x.
    • (2011) Tellus A , vol.63 , pp. 513-530
    • Iversen, T.1    Deckmyn, A.2    Santos, C.3    Sattler, K.4    Bremnes, J.B.5    Feddersen, H.6    Frogner, I.L.7
  • 53
    • 84921540559 scopus 로고    scopus 로고
    • Potential sea ice predictability and the role of stochastic sea ice strength perturbations
    • Juricke S, Goessling HF, Jung T. 2014. Potential sea ice predictability and the role of stochastic sea ice strength perturbations. Geophys. Res. Lett. 41: 8396–8403. https://doi.org/10.1002/2014GL062081.2014GL062081.
    • (2014) Geophys. Res. Lett. , vol.41 , pp. 8396-8403
    • Juricke, S.1    Goessling, H.F.2    Jung, T.3
  • 54
    • 85012999169 scopus 로고    scopus 로고
    • Stochastic subgrid-scale ocean mixing: Impacts on low frequency variability
    • Juricke S, Palmer TN, Zanna L. 2017. Stochastic subgrid-scale ocean mixing: Impacts on low frequency variability. J. Clim. 30: 4997–5019. https://doi.org/10.1175/JCLI-D-16-0539.1.
    • (2017) J. Clim. , vol.30 , pp. 4997-5019
    • Juricke, S.1    Palmer, T.N.2    Zanna, L.3
  • 55
    • 1342283059 scopus 로고    scopus 로고
    • Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities
    • Khairoutdinov MF, Randall DA. 2003. Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci. 60: 607–625.
    • (2003) J. Atmos. Sci. , vol.60 , pp. 607-625
    • Khairoutdinov, M.F.1    Randall, D.A.2
  • 56
    • 84964060216 scopus 로고    scopus 로고
    • High resolution simulation of nonstationary Gaussian random fields
    • Kleiber W. 2016. High resolution simulation of nonstationary Gaussian random fields. Comput. Stat. Data Anal. 101: 277–288. http://dx.doi.org/10.1016/j.csda.2016.03.005.
    • (2016) Comput. Stat. Data Anal. , vol.101 , pp. 277-288
    • Kleiber, W.1
  • 57
    • 0034024295 scopus 로고    scopus 로고
    • The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration
    • Klinker E, Rabier F, Kelly G, Mahfouf JF. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Q. J. R. Meteorol. Soc. 126: 1191–1215.
    • (2000) Q. J. R. Meteorol. Soc. , vol.126 , pp. 1191-1215
    • Klinker, E.1    Rabier, F.2    Kelly, G.3    Mahfouf, J.F.4
  • 58
    • 84977516264 scopus 로고    scopus 로고
    • Physically based stochastic perturbations (PSP) in the boundary layer to represent uncertainty in convective initiation
    • Kober K, Craig GC. 2016. Physically based stochastic perturbations (PSP) in the boundary layer to represent uncertainty in convective initiation. J. Atmos. Sci. 73: 2893–2911. https://doi.org/10.1175/JAS-D-15-0144.1.
    • (2016) J. Atmos. Sci. , vol.73 , pp. 2893-2911
    • Kober, K.1    Craig, G.C.2
  • 59
    • 84893411174 scopus 로고    scopus 로고
    • Spatial process generation, lectures on stochastic geometry, spatial statistics and random fields
    • In, II., Springer-Verlag, Berlin, In Press
    • Kroese D, Botev Z. 2013. Spatial process generation, lectures on stochastic geometry, spatial statistics and random fields. In Analysis, Modeling and Simulation of Complex Structures, II. Springer-Verlag: Berlin. In Press.
    • (2013) Analysis, Modeling and Simulation of Complex Structures
    • Kroese, D.1    Botev, Z.2
  • 60
    • 84945549380 scopus 로고    scopus 로고
    • Anelastic and compressible simulation of moist dynamics at planetary scales
    • Kurowski MJ, Grabowski WW, Smolarkiewicz PK. 2015. Anelastic and compressible simulation of moist dynamics at planetary scales. J. Atmos. Sci. 72: 3975–3995.
    • (2015) J. Atmos. Sci. , vol.72 , pp. 3975-3995
    • Kurowski, M.J.1    Grabowski, W.W.2    Smolarkiewicz, P.K.3
  • 61
    • 84946480633 scopus 로고    scopus 로고
    • On the impact of re-centring initial conditions for ensemble forecasts
    • Lang STK, Bonavita M, Leutbecher M. 2015. On the impact of re-centring initial conditions for ensemble forecasts. Q. J. R. Meteorol. Soc. 141: 2571–2581. https://doi.org/10.1002/qj.2543.
    • (2015) Q. J. R. Meteorol. Soc. , vol.141 , pp. 2571-2581
    • Lang, S.T.K.1    Bonavita, M.2    Leutbecher, M.3
  • 62
    • 84905060188 scopus 로고    scopus 로고
    • On the reliability of ensemble variance in subspaces defined by singular vectors
    • Leutbecher M, Lang STK. 2014. On the reliability of ensemble variance in subspaces defined by singular vectors. Q. J. R. Meteorol. Soc. 140: 1453–1466. https://doi.org/10.1002/qj.2229.
    • (2014) Q. J. R. Meteorol. Soc. , vol.140 , pp. 1453-1466
    • Leutbecher, M.1    Lang, S.T.K.2
  • 63
    • 24144454647 scopus 로고    scopus 로고
    • Roots of ensemble forecasting
    • Lewis JM. 2005. Roots of ensemble forecasting. Mon. Weather Rev. 133: 1865–1885.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 1865-1885
    • Lewis, J.M.1
  • 64
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach
    • Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. B 73: 423–498.
    • (2011) J. R. Stat. Soc. B , vol.73 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 65
    • 0000853495 scopus 로고
    • The predictability of a flow which possesses many scales of motion
    • Lorenz EN. 1969. The predictability of a flow which possesses many scales of motion. Tellus 21: 289–307.
    • (1969) Tellus , vol.21 , pp. 289-307
    • Lorenz, E.N.1
  • 66
    • 84859311423 scopus 로고    scopus 로고
    • A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the Equatorial stratosphere
    • Lott F, Guez L, Maury P. 2012. A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the Equatorial stratosphere. Geophys. Res. Lett. 39: L06 807. https://doi.org/10.1029/2012GL051001.
    • (2012) Geophys. Res. Lett. , vol.39 , pp. L06 807
    • Lott, F.1    Guez, L.2    Maury, P.3
  • 67
    • 84984870606 scopus 로고    scopus 로고
    • Representing model uncertainty in the Met Office convection-permitting ensemble prediction system and its impact on fog forecasting
    • McCabe A, Swinbank R, Tennant W, Lock A. 2016. Representing model uncertainty in the Met Office convection-permitting ensemble prediction system and its impact on fog forecasting. Q. J. R. Meteorol. Soc. 142: 2897–2910. https://doi.org/10.1002/qj.2876.
    • (2016) Q. J. R. Meteorol. Soc. , vol.142 , pp. 2897-2910
    • McCabe, A.1    Swinbank, R.2    Tennant, W.3    Lock, A.4
  • 68
    • 84957843179 scopus 로고    scopus 로고
    • Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface
    • MacLeod DA, Cloke HL, Pappenberger F, Weisheimer A. 2016. Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. Q. J. R. Meteorol. Soc. 142: 79–90. https://doi.org/10.1002/qj.2631.
    • (2016) Q. J. R. Meteorol. Soc. , vol.142 , pp. 79-90
    • MacLeod, D.A.1    Cloke, H.L.2    Pappenberger, F.3    Weisheimer, A.4
  • 69
    • 0034028516 scopus 로고    scopus 로고
    • The ECMWF operational implementation of four-dimensional variational assimilation. II: Experimental results with improved physics
    • Mahfouf JF, Rabier F. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. II: Experimental results with improved physics. Q. J. R. Meteorol. Soc. 126: 1171–1190. https://doi.org/10.1002/qj.49712656416.
    • (2000) Q. J. R. Meteorol. Soc. , vol.126 , pp. 1171-1190
    • Mahfouf, J.F.1    Rabier, F.2
  • 70
    • 85029382188 scopus 로고    scopus 로고
    • How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models?
    • Malardel S, Wedi NP. 2016. How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models?. J. Geophys. Res. Atmos. 121: 5395–5410. https://doi.org/10.1002/2015JD023970.
    • (2016) J. Geophys. Res. Atmos. , vol.121 , pp. 5395-5410
    • Malardel, S.1    Wedi, N.P.2
  • 74
    • 57349153518 scopus 로고    scopus 로고
    • Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System
    • Morcrette JJ, Barker HW, Cole JNS, Iacono MJ, Pincus R. 2008a. Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Weather Rev. 136: 4773–4798. https://doi.org/10.1175/2008MWR2363.1.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 4773-4798
    • Morcrette, J.J.1    Barker, H.W.2    Cole, J.N.S.3    Iacono, M.J.4    Pincus, R.5
  • 75
    • 64149086602 scopus 로고    scopus 로고
    • A reduced radiation grid for the ECMWF Integrated Forecasting System
    • Morcrette JJ, Mozdzynski G, Leutbecher M. 2008b. A reduced radiation grid for the ECMWF Integrated Forecasting System. Mon. Weather Rev. 136: 4760–4772.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 4760-4772
    • Morcrette, J.J.1    Mozdzynski, G.2    Leutbecher, M.3
  • 77
    • 0022266328 scopus 로고
    • A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft
    • Nastrom GD, Gage KS. 1985. A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42: 950–960. https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.
    • (1985) J. Atmos. Sci. , vol.42 , pp. 950-960
    • Nastrom, G.D.1    Gage, K.S.2
  • 79
    • 84966309330 scopus 로고    scopus 로고
    • Improving weather predictability by including land surface model parameter uncertainty
    • Orth R, Dutra E, Pappenberger F. 2016. Improving weather predictability by including land surface model parameter uncertainty. Mon. Weather Rev. 144: 1551–1569. https://doi.org/10.1175/MWR-D-15-0283.1.
    • (2016) Mon. Weather Rev. , vol.144 , pp. 1551-1569
    • Orth, R.1    Dutra, E.2    Pappenberger, F.3
  • 80
    • 0035086606 scopus 로고    scopus 로고
    • A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models
    • Palmer TN. 2001. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 127: 279–304.
    • (2001) Q. J. R. Meteorol. Soc. , vol.127 , pp. 279-304
    • Palmer, T.N.1
  • 81
    • 84862160611 scopus 로고    scopus 로고
    • Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction
    • Palmer TN. 2012. Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138: 841–861. https://doi.org/10.1002/qj.1923.
    • (2012) Q. J. R. Meteorol. Soc. , vol.138 , pp. 841-861
    • Palmer, T.N.1
  • 82
    • 84911486872 scopus 로고    scopus 로고
    • Climate forecasting: Build high-resolution global climate models
    • Palmer T. 2014. Climate forecasting: Build high-resolution global climate models. Nature 515: 338–339. https://doi.org/10.1038/515338a.
    • (2014) Nature , vol.515 , pp. 338-339
    • Palmer, T.1
  • 85
    • 85029921661 scopus 로고    scopus 로고
    • Stochastic parameterization development in the NOAA/NCEP Global Forecast System
    • In, 47., ECMWF/WWRP, Reading. UK, (accessed 19 July 2017)
    • Pegion P, Bates G, Gehne M, Hamill T, Kolczynski W, Whitaker J, Zhu Y. 2016. Stochastic parameterization development in the NOAA/NCEP Global Forecast System. In Workshop on Model Uncertainty, 47. ECMWF/WWRP: Reading. UK. www.ecmwf.int/en/elibrary/16551-ecmwf-wwrp-workshop-model-uncertainty-proceedings (accessed 19 July 2017).
    • (2016) Workshop on Model Uncertainty
    • Pegion, P.1    Bates, G.2    Gehne, M.3    Hamill, T.4    Kolczynski, W.5    Whitaker, J.6    Zhu, Y.7
  • 86
    • 84888063181 scopus 로고    scopus 로고
    • Stochastic behavior of tropical convection in observations and a multicloud model
    • Peters K, Jakob C, Davies L, Khouider B, Majda AJ. 2013. Stochastic behavior of tropical convection in observations and a multicloud model. J. Atmos. Sci. 70: 3556–3575.
    • (2013) J. Atmos. Sci. , vol.70 , pp. 3556-3575
    • Peters, K.1    Jakob, C.2    Davies, L.3    Khouider, B.4    Majda, A.J.5
  • 87
    • 84957798776 scopus 로고    scopus 로고
    • Ensemble data assimilation using a unified representation of model error
    • Piccolo C, Cullen M. 2016. Ensemble data assimilation using a unified representation of model error. Mon. Weather Rev. 144: 213–224. https://doi.org/10.1175/MWR-D-15-0270.1.
    • (2016) Mon. Weather Rev. , vol.144 , pp. 213-224
    • Piccolo, C.1    Cullen, M.2
  • 88
    • 38849155083 scopus 로고    scopus 로고
    • A stochastic parameterization for deep convection based on equilibrium statistics
    • Plant R, Craig GC. 2008. A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci. 65: 87–105.
    • (2008) J. Atmos. Sci. , vol.65 , pp. 87-105
    • Plant, R.1    Craig, G.C.2
  • 89
    • 0342804504 scopus 로고    scopus 로고
    • The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics
    • Rabier F, Järvinen H, Klinker E, Mahfouf JF, Simmons A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc. 126: 1143–1170.
    • (2000) Q. J. R. Meteorol. Soc. , vol.126 , pp. 1143-1170
    • Rabier, F.1    Järvinen, H.2    Klinker, E.3    Mahfouf, J.F.4    Simmons, A.5
  • 91
    • 84860394580 scopus 로고    scopus 로고
    • Accounting for model error in the Météo-France ensemble data assimilation system
    • Raynaud L, Berre L, Desroziers G. 2012. Accounting for model error in the Météo-France ensemble data assimilation system. Q. J. R. Meteorol. Soc. 138: 249–262.
    • (2012) Q. J. R. Meteorol. Soc. , vol.138 , pp. 249-262
    • Raynaud, L.1    Berre, L.2    Desroziers, G.3
  • 92
    • 80052883017 scopus 로고    scopus 로고
    • Examination of parameter variations in the U. S. Navy global ensemble
    • Reynolds C, Ridout J, McLay J. 2011. Examination of parameter variations in the U. S. Navy global ensemble. Tellus A 63: 841–857. https://doi.org/10.1111/j.1600-0870.2011.00532.x.
    • (2011) Tellus A , vol.63 , pp. 841-857
    • Reynolds, C.1    Ridout, J.2    McLay, J.3
  • 96
    • 3142779257 scopus 로고    scopus 로고
    • Effects of observation errors on the statistics for ensemble spread and reliability
    • Saetra Ø, Hersbach H, Bidlot JR, Richardson DS. 2004. Effects of observation errors on the statistics for ensemble spread and reliability. Mon. Weather Rev. 132: 1487–1501.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 1487-1501
    • Saetra, Ø.1    Hersbach, H.2    Bidlot, J.R.3    Richardson, D.S.4
  • 97
    • 84957848216 scopus 로고    scopus 로고
    • Improved stochastic physics schemes for global weather and climate models
    • Sanchez C, Williams KD, Collins M. 2016. Improved stochastic physics schemes for global weather and climate models. Q. J. R. Meteorol. Soc. 142: 147–159.
    • (2016) Q. J. R. Meteorol. Soc. , vol.142 , pp. 147-159
    • Sanchez, C.1    Williams, K.D.2    Collins, M.3
  • 98
    • 84880752767 scopus 로고    scopus 로고
    • Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models?
    • Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G. 2013. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models?. J. Adv. Model. Earth Syst. 5: 117–133. https://doi.org/10.1002/jame.20013.
    • (2013) J. Adv. Model. Earth Syst. , vol.5 , pp. 117-133
    • Sandu, I.1    Beljaars, A.2    Bechtold, P.3    Mauritsen, T.4    Balsamo, G.5
  • 99
    • 84891800962 scopus 로고    scopus 로고
    • Uncertainty quantification in complex simulation models using ensemble copula coupling
    • Schefzik R, Thorarinsdottir TL, Gneiting T. 2013. Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci. 28: 616–640. https://doi.org/10.1214/13-STS443.
    • (2013) Stat. Sci. , vol.28 , pp. 616-640
    • Schefzik, R.1    Thorarinsdottir, T.L.2    Gneiting, T.3
  • 100
    • 84908227003 scopus 로고    scopus 로고
    • Construction of covariance functions and unconditional simulation of random fields
    • In, Springer, Berlin, Heidelberg
    • Schlather M. 2012. Construction of covariance functions and unconditional simulation of random fields. In Advances and Challenges in Space-time Modelling of Natural Events, 25–54. Springer: Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17086-7_2.
    • (2012) Advances and Challenges in Space-time Modelling of Natural Events , pp. 25-54
    • Schlather, M.1
  • 101
    • 84929504816 scopus 로고    scopus 로고
    • Simulation of upscale error growth with a stochastic convection scheme
    • Selz T, Craig GC. 2015a. Simulation of upscale error growth with a stochastic convection scheme. Geophys. Res. Lett. 42: 3056–3062. https://doi.org/10.1002/2015GL063525.
    • (2015) Geophys. Res. Lett. , vol.42 , pp. 3056-3062
    • Selz, T.1    Craig, G.C.2
  • 102
    • 84924943762 scopus 로고    scopus 로고
    • Upscale error growth in a high-resolution simulation of a summertime weather event over Europe
    • Selz T, Craig GC. 2015b. Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Weather Rev. 143: 813–827. https://doi.org/10.1175/MWR-D-14-00140.1.
    • (2015) Mon. Weather Rev. , vol.143 , pp. 813-827
    • Selz, T.1    Craig, G.C.2
  • 103
    • 85029919106 scopus 로고    scopus 로고
    • Model error representation in the Canadian ensemble prediction systems
    • Reading, UK, (accessed 19 July 2017)
    • Separovic L, Charron M, Erfani A, Gagnon N, Zadra A, Vaillancourt P. 2016. ‘Model error representation in the Canadian ensemble prediction systems’, Workshop on Model Uncertainty, Reading, UK. www.ecmwf.int/en/elibrary/16551-ecmwf-wwrp-workshop-model-uncertainty-proceedings (accessed 19 July 2017).
    • (2016) Workshop on Model Uncertainty
    • Separovic, L.1    Charron, M.2    Erfani, A.3    Gagnon, N.4    Zadra, A.5    Vaillancourt, P.6
  • 104
    • 31544461628 scopus 로고    scopus 로고
    • A kinetic energy backscatter algorithm for use in ensemble prediction systems
    • Shutts G. 2005. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131: 3079–3102.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 3079-3102
    • Shutts, G.1
  • 105
    • 84877661096 scopus 로고    scopus 로고
    • Coarse graining the vorticity equation in the ECMWF integrated forecasting system: The search for kinetic energy backscatter
    • Shutts GJ. 2013. Coarse graining the vorticity equation in the ECMWF integrated forecasting system: The search for kinetic energy backscatter. J. Atmos. Sci. 70: 1233–1241. https://doi.org/10.1175/JAS-D-12-0216.1.
    • (2013) J. Atmos. Sci. , vol.70 , pp. 1233-1241
    • Shutts, G.J.1
  • 106
    • 84946477434 scopus 로고    scopus 로고
    • A stochastic convective backscatter scheme for use in ensemble prediction systems
    • Shutts G. 2015. A stochastic convective backscatter scheme for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 141: 2602–2616. https://doi.org/10.1002/qj.2547.
    • (2015) Q. J. R. Meteorol. Soc. , vol.141 , pp. 2602-2616
    • Shutts, G.1
  • 107
    • 84901624484 scopus 로고    scopus 로고
    • Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models
    • Shutts G, Pallarès AC. 2014. Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models. Philos. Trans. R. Soc. A 372: 20130284. https://doi.org/10.1098/rsta.2013.0284.
    • (2014) Philos. Trans. R. Soc. A , vol.372 , pp. 20130284
    • Shutts, G.1    Pallarès, A.C.2
  • 108
    • 33846917940 scopus 로고    scopus 로고
    • Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem
    • Shutts GJ, Palmer TN. 2007. Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem. J. Clim. 20: 187–202.
    • (2007) J. Clim. , vol.20 , pp. 187-202
    • Shutts, G.J.1    Palmer, T.N.2
  • 110
    • 84917679654 scopus 로고    scopus 로고
    • Stochastic partial differential equation based modelling of large space–time data sets
    • Sigrist F, Künsch HR, Stahel WA. 2015. Stochastic partial differential equation based modelling of large space–time data sets. J. R. Stat. Soc. B 77: 3–33.
    • (2015) J. R. Stat. Soc. B , vol.77 , pp. 3-33
    • Sigrist, F.1    Künsch, H.R.2    Stahel, W.A.3
  • 111
    • 0027010079 scopus 로고
    • A class of semi-Lagrangian approximations for fluids
    • Smolarkiewicz PK, Pudykiewicz JA. 1992. A class of semi-Lagrangian approximations for fluids. J. Atmos. Sci. 49: 2082–2096.
    • (1992) J. Atmos. Sci. , vol.49 , pp. 2082-2096
    • Smolarkiewicz, P.K.1    Pudykiewicz, J.A.2
  • 114
    • 85015263990 scopus 로고    scopus 로고
    • Impact of stochastic physics on tropical precipitation and climate variability in the ECMWF IFS
    • Subramanian A, Weisheimer A, Palmer T, Vitart F, Bechtold P. 2017. Impact of stochastic physics on tropical precipitation and climate variability in the ECMWF IFS. Q. J. R. Meteorol. Soc. 143: 852–865. https://doi.org/10.1002/qj.2970.
    • (2017) Q. J. R. Meteorol. Soc. , vol.143 , pp. 852-865
    • Subramanian, A.1    Weisheimer, A.2    Palmer, T.3    Vitart, F.4    Bechtold, P.5
  • 115
    • 85016604924 scopus 로고    scopus 로고
    • Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer
    • Sullivan PP, Weil JC, Patton EG, Jonker HJ, Mironov DV. 2016. Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci. 73: 1815–1840.
    • (2016) J. Atmos. Sci. , vol.73 , pp. 1815-1840
    • Sullivan, P.P.1    Weil, J.C.2    Patton, E.G.3    Jonker, H.J.4    Mironov, D.V.5
  • 116
    • 79955142260 scopus 로고    scopus 로고
    • Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill
    • Tennant WJ, Shutts GJ, Arribas A, Thompson SA. 2011. Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Weather Rev. 139: 1190–1206.
    • (2011) Mon. Weather Rev. , vol.139 , pp. 1190-1206
    • Tennant, W.J.1    Shutts, G.J.2    Arribas, A.3    Thompson, S.A.4
  • 117
    • 85029917881 scopus 로고    scopus 로고
    • Impacts of a spatially varying random parameter scheme on cloud cover in MOGREPS
    • In, ECMWF/WWRP, Reading, UK
    • Tennant WJ. 2016. Impacts of a spatially varying random parameter scheme on cloud cover in MOGREPS. In Workshop on model uncertainty. ECMWF/WWRP: Reading, UK, www.ecmwf.int/sites/default/files/elibrary/2016/16301-impacts-spatially-varying-random-parameterscheme-cloud-cover-mogreps.pdf.
    • (2016) Workshop on model uncertainty
    • Tennant, W.J.1
  • 118
    • 85029958342 scopus 로고    scopus 로고
    • Model uncertainty representation in COSMO-DE-EPS
    • Reading, UK, (accessed 19 July 2017)
    • Theis S, Buchhold M, Gebhardt C, Kohlhepp R, Röpnack A. 2016. ‘Model uncertainty representation in COSMO-DE-EPS’, In Workshop on Model Uncertainty, Reading, UK. www.ecmwf.int/en/elibrary/16551-ecmwf-wwrp-workshop-model-uncertainty-proceedings (accessed 19 July 2017).
    • (2016) Workshop on Model Uncertainty
    • Theis, S.1    Buchhold, M.2    Gebhardt, C.3    Kohlhepp, R.4    Röpnack, A.5
  • 119
    • 84939441043 scopus 로고    scopus 로고
    • A lag-1 smoother approach to system-error estimation: Sequential method
    • Todling R. 2015a. A lag-1 smoother approach to system-error estimation: Sequential method. Q. J. R. Meteorol. Soc. 141: 1502–1513.
    • (2015) Q. J. R. Meteorol. Soc. , vol.141 , pp. 1502-1513
    • Todling, R.1
  • 120
    • 84946478110 scopus 로고    scopus 로고
    • A complementary note to ‘A lag-1 smoother approach to system-error estimation’: The intrinsic limitations of residual diagnostics
    • Todling R. 2015b. A complementary note to ‘A lag-1 smoother approach to system-error estimation’: The intrinsic limitations of residual diagnostics. Q. J. R. Meteorol. Soc. 141: 2917–2922.
    • (2015) Q. J. R. Meteorol. Soc. , vol.141 , pp. 2917-2922
    • Todling, R.1
  • 121
    • 34548215235 scopus 로고    scopus 로고
    • Model-error estimation in 4D-Var
    • Trémolet Y. 2007. Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc. 133: 1267–1280. https://doi.org/10.1002/qj.94.
    • (2007) Q. J. R. Meteorol. Soc. , vol.133 , pp. 1267-1280
    • Trémolet, Y.1
  • 122
    • 85036626265 scopus 로고    scopus 로고
    • A limited-area spatio-temporal stochastic pattern generator for simulation of uncertainties in ensemble applications
    • Tsyrulnikov M, Gayfulin D. 2016. A limited-area spatio-temporal stochastic pattern generator for simulation of uncertainties in ensemble applications. Meteorol. Z.: In Press. https://doi.org/10.1127/metz/2017/0815.
    • (2016) Meteorol. Z. , pp. In Press
    • Tsyrulnikov, M.1    Gayfulin, D.2
  • 124
    • 77954491947 scopus 로고    scopus 로고
    • Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system
    • Vitart F, Molteni F. 2010. Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Q. J. R. Meteorol. Soc. 136: 842–855.
    • (2010) Q. J. R. Meteorol. Soc. , vol.136 , pp. 842-855
    • Vitart, F.1    Molteni, F.2
  • 125
    • 84920570841 scopus 로고    scopus 로고
    • Does the ECMWF IFS convection parameterization with stochastic physics correctly reproduce relationships between convection and the large-scale state?
    • Watson PAG, Christensen HM, Palmer TN. 2015. Does the ECMWF IFS convection parameterization with stochastic physics correctly reproduce relationships between convection and the large-scale state?. J. Atmos. Sci. 72: 236–242. https://doi.org/10.1175/JAS-D-14-0252.1.
    • (2015) J. Atmos. Sci. , vol.72 , pp. 236-242
    • Watson, P.A.G.1    Christensen, H.M.2    Palmer, T.N.3
  • 126
    • 0035390475 scopus 로고    scopus 로고
    • Correlation modelling on the sphere using a generalized diffusion equation
    • Weaver A, Courtier P. 2001. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc. 127: 1815–1846.
    • (2001) Q. J. R. Meteorol. Soc. , vol.127 , pp. 1815-1846
    • Weaver, A.1    Courtier, P.2
  • 128
    • 80051977694 scopus 로고    scopus 로고
    • Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles
    • Weisheimer A, Palmer TN, Doblas-Reyes FJ. 2011. Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys. Res. Lett. 38: L16703. https://doi.org/10.1029/2011GL048123.
    • (2011) Geophys. Res. Lett. , vol.38 , pp. L16703
    • Weisheimer, A.1    Palmer, T.N.2    Doblas-Reyes, F.J.3
  • 129
    • 84901387299 scopus 로고    scopus 로고
    • Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system
    • Weisheimer A, Corti S, Palmer T, Vitart F. 2014. Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system. Philos. Trans. A. Math. Phys. Eng. Sci 372: 20130290. https://doi.org/10.1098/rsta.2013.0290.
    • (2014) Philos. Trans. A. Math. Phys. Eng. Sci , vol.372 , pp. 20130290
    • Weisheimer, A.1    Corti, S.2    Palmer, T.3    Vitart, F.4
  • 130
    • 2942673326 scopus 로고    scopus 로고
    • An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction
    • Wheeler MC, Hendon HH. 2004. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 132: 1917–1932.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 1917-1932
    • Wheeler, M.C.1    Hendon, H.H.2
  • 131
    • 20544463416 scopus 로고    scopus 로고
    • Effects of stochastic parametrizations in the Lorenz ’96 system
    • Wilks DS. 2005. Effects of stochastic parametrizations in the Lorenz ’96 system. Q. J. R. Meteorol. Soc. 131: 389–407.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 389-407
    • Wilks, D.S.1
  • 132
    • 85001038120 scopus 로고    scopus 로고
    • Improved climate simulations through a stochastic parameterization of ocean eddies
    • Williams PD, Howe NJ, Gregory JM, Smith RS, Joshi MM. 2016. Improved climate simulations through a stochastic parameterization of ocean eddies. J. Clim. 29: 8763–8781. https://doi.org/10.1175/JCLI-D-15-0746.1.
    • (2016) J. Clim. , vol.29 , pp. 8763-8781
    • Williams, P.D.1    Howe, N.J.2    Gregory, J.M.3    Smith, R.S.4    Joshi, M.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.