메뉴 건너뛰기




Volumn 77, Issue 1, 2015, Pages 3-33

Stochastic partial differential equation based modelling of large space-time data sets

Author keywords

Advection diffusion equation; Gaussian process; Numerical weather prediction; Physics based model; Spatiotemporal model; Spectral methods

Indexed keywords


EID: 84917679654     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/rssb.12061     Document Type: Article
Times cited : (92)

References (114)
  • 2
    • 0004093046 scopus 로고
    • (eds B. D. O. Anderson and J. B. Moore). Englewood Cliffs: Prentice Hall.
    • Anderson, B. D. O. and Moore, J. B. (1979) Optimal Filtering (eds B. D. O. Anderson and J. B. Moore ). Englewood Cliffs: Prentice Hall.
    • (1979) Optimal Filtering
    • Anderson, B.D.O.1    Moore, J.B.2
  • 3
    • 0034694811 scopus 로고    scopus 로고
    • An overview of the national weather service's centralized statistical quantitative precipitation forecasts
    • Antolik, M. S. (2000) An overview of the national weather service's centralized statistical quantitative precipitation forecasts. J. Hydrol., 239, 306-337.
    • (2000) J. Hydrol. , vol.239 , pp. 306-337
    • Antolik, M.S.1
  • 4
    • 0036693803 scopus 로고    scopus 로고
    • Comparison of methodologies for probabilistic quantitative precipitation forecasting
    • Applequist, S., Gahrs, G. E., Pfeffer, R. L. and Niu, X.-F. (2002) Comparison of methodologies for probabilistic quantitative precipitation forecasting. Weath. Forecast., 17, 783-799.
    • (2002) Weath. Forecast. , vol.17 , pp. 783-799
    • Applequist, S.1    Gahrs, G.E.2    Pfeffer, R.L.3    Niu, X.-F.4
  • 5
    • 84917684021 scopus 로고    scopus 로고
    • The use of systems of stochastic PDEs as priors for multivariate models with discrete structures
    • Preprint arXiv:1208.1717.
    • Aune, E. and Simpson, D. (2012) The use of systems of stochastic PDEs as priors for multivariate models with discrete structures. Preprint arXiv:1208.1717.
    • (2012)
    • Aune, E.1    Simpson, D.2
  • 7
    • 47649103974 scopus 로고    scopus 로고
    • Gaussian predictive process models for large spatial data sets
    • Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008) Gaussian predictive process models for large spatial data sets. J. R. Statist. Soc. B, 70, 825-848.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 825-848
    • Banerjee, S.1    Gelfand, A.E.2    Finley, A.O.3    Sang, H.4
  • 8
    • 0027101552 scopus 로고
    • Space-time model for daily rainfall using atmospheric circulation patterns
    • Bardossy, A. and Plate, E. (1992) Space-time model for daily rainfall using atmospheric circulation patterns. Wat. Resour. Res., 28, 1247-1259.
    • (1992) Wat. Resour. Res. , vol.28 , pp. 1247-1259
    • Bardossy, A.1    Plate, E.2
  • 9
    • 0000424802 scopus 로고
    • A space-time stochastic model of rainfall for satellite remote-sensing studies
    • Bell, T. (1987) A space-time stochastic model of rainfall for satellite remote-sensing studies. J. Geophys. Res., 92, 9631-9643.
    • (1987) J. Geophys. Res. , vol.92 , pp. 9631-9643
    • Bell, T.1
  • 10
    • 77950950767 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation field forecasting using a two-stage spatial model
    • Berrocal, V. J., Raftery, A. E. and Gneiting, T. (2008) Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann. Appl. Statist., 2, 1170-1193.
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 1170-1193
    • Berrocal, V.J.1    Raftery, A.E.2    Gneiting, T.3
  • 11
    • 0007583320 scopus 로고
    • Three-dimensional frequency-domain simulations of geological variables
    • In (ed. G. Verly) -. Boston: Reidel.
    • Borgman, L., Taheri, M. and Hagan, R. (1984) Three-dimensional frequency-domain simulations of geological variables. In Geostatistics for Natural Resources Characterization (ed. G. Verly ), pp. 517-541. Boston: Reidel.
    • (1984) Geostatistics for Natural Resources Characterization , pp. 517-541
    • Borgman, L.1    Taheri, M.2    Hagan, R.3
  • 12
    • 1842483168 scopus 로고    scopus 로고
    • Probabilistic forecasts of precipitation in terms of quantiles using NWP model output
    • Bremnes, B. J. (2004) Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mnthly Weath. Rev., 132, 338-347.
    • (2004) Mnthly Weath. Rev. , vol.132 , pp. 338-347
    • Bremnes, B.J.1
  • 16
    • 84875739913 scopus 로고    scopus 로고
    • Spatio-temporal modeling of particulate matter concentration through the SPDE approach
    • Cameletti, M., Lindgren, F., Simpson, D. and Rue, H. (2013) Spatio-temporal modeling of particulate matter concentration through the SPDE approach. Adv. Statist. Anal., 79, 109-131.
    • (2013) Adv. Statist. Anal. , vol.79 , pp. 109-131
    • Cameletti, M.1    Lindgren, F.2    Simpson, D.3    Rue, H.4
  • 17
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter, C. K. and Kohn, R. (1994) On Gibbs sampling for state space models. Biometrika, 81, 541-553.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 18
    • 0020344023 scopus 로고
    • Fitting models to daily rainfall data
    • Coe, R. and Stern, R. (1982) Fitting models to daily rainfall data. J. Appl. Meteorol., 21, 1024-1031.
    • (1982) J. Appl. Meteorol. , vol.21 , pp. 1024-1031
    • Coe, R.1    Stern, R.2
  • 19
    • 84968470212 scopus 로고
    • An algorithm for the machine calculation of complex Fourier series
    • Cooley, J. W. and Tukey, J. W. (1965) An algorithm for the machine calculation of complex Fourier series. Math. Computn, 19, 297-301.
    • (1965) Math. Computn , vol.19 , pp. 297-301
    • Cooley, J.W.1    Tukey, J.W.2
  • 21
    • 0442325070 scopus 로고    scopus 로고
    • Classes of nonseparable, spatio-temporal stationary covariance functions
    • Cressie, N. and Huang, H.-C. (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Statist. Ass., 94, 1330-1340.
    • (1999) J. Am. Statist. Ass. , vol.94 , pp. 1330-1340
    • Cressie, N.1    Huang, H.-C.2
  • 22
    • 37849041594 scopus 로고    scopus 로고
    • Fixed rank kriging for very large spatial data sets
    • Cressie, N. and Johannesson, G. (2008) Fixed rank kriging for very large spatial data sets. J. R. Statist. Soc. B, 70, 209-226.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 209-226
    • Cressie, N.1    Johannesson, G.2
  • 24
    • 84867132158 scopus 로고    scopus 로고
    • Modeling space-time data using stochastic differential equations
    • Duan, J. A., Gelfand, A. E. and Sirmans, C. (2009) Modeling space-time data using stochastic differential equations. Baysn Anal., 4, 733-758.
    • (2009) Baysn Anal. , vol.4 , pp. 733-758
    • Duan, J.A.1    Gelfand, A.E.2    Sirmans, C.3
  • 26
    • 84893976682 scopus 로고    scopus 로고
    • Estimation and prediction in spatial models with block composite likelihoods using parallel computing
    • Technical Report. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim. (Available from
    • Eidsvik, J., Shaby, B., Reich, B., Wheeler, M. and Niemi, J. (2012) Estimation and prediction in spatial models with block composite likelihoods using parallel computing. Technical Report. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim. (Available from http://www.math.ntnu.no/~joeid/ESRWN.pdf.)
    • (2012)
    • Eidsvik, J.1    Shaby, B.2    Reich, B.3    Wheeler, M.4    Niemi, J.5
  • 28
    • 34447336375 scopus 로고    scopus 로고
    • Statistical downscaling of extreme precipitation events using censored quantile regression
    • Friederichs, P. and Hense, A. (2007) Statistical downscaling of extreme precipitation events using censored quantile regression. Mnthly Weath. Rev., 135, 2365-2378.
    • (2007) Mnthly Weath. Rev. , vol.135 , pp. 2365-2378
    • Friederichs, P.1    Hense, A.2
  • 29
    • 84981426681 scopus 로고
    • Data augmentation and dynamic linear models
    • Frühwirth-Schnatter, S. (1994) Data augmentation and dynamic linear models. J. Time Ser. Anal., 15, 183-202.
    • (1994) J. Time Ser. Anal. , vol.15 , pp. 183-202
    • Frühwirth-Schnatter, S.1
  • 30
    • 33947194951 scopus 로고    scopus 로고
    • Approximate likelihood for large irregularly spaced spatial data
    • Fuentes, M. (2007) Approximate likelihood for large irregularly spaced spatial data. J. Am. Statist. Ass., 102, 321-331.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 321-331
    • Fuentes, M.1
  • 31
    • 33750007327 scopus 로고    scopus 로고
    • Covariance tapering for interpolation of large spatial datasets
    • Furrer, R., Genton, M. G. and Nychka, D. (2006) Covariance tapering for interpolation of large spatial datasets. J. Computnl Graph. Statist., 15, 502-523.
    • (2006) J. Computnl Graph. Statist. , vol.15 , pp. 502-523
    • Furrer, R.1    Genton, M.G.2    Nychka, D.3
  • 32
    • 20744444147 scopus 로고    scopus 로고
    • Spatial process modelling for univariate and multivariate dynamic spatial data
    • Gelfand, A. E., Banerjee, S. and Gamerman, D. (2005) Spatial process modelling for univariate and multivariate dynamic spatial data. Environmetrics, 16, 465-479.
    • (2005) Environmetrics , vol.16 , pp. 465-479
    • Gelfand, A.E.1    Banerjee, S.2    Gamerman, D.3
  • 33
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand, A. E. and Smith, A. F. M. (1990) Sampling-based approaches to calculating marginal densities. J. Am. Statist. Ass., 85, 398-409.
    • (1990) J. Am. Statist. Ass. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 34
    • 33645764652 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Baysn Anal., 1, 1-19.
    • (2006) Baysn Anal. , vol.1 , pp. 1-19
    • Gelman, A.1
  • 36
    • 0035998830 scopus 로고    scopus 로고
    • Nonseparable, stationary covariance functions for space-time data
    • Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data. J. Am. Statist. Ass., 97, 590-600.
    • (2002) J. Am. Statist. Ass. , vol.97 , pp. 590-600
    • Gneiting, T.1
  • 38
    • 34250751629 scopus 로고    scopus 로고
    • Geostatistical space-time models, stationarity, separability and full symmetry.
    • In (eds B. Finkenstädt, L. Held and V. Isham) -. Boca Raton: Chapman and Hall-CRC.
    • Gneiting, T., Genton, M. G. and Guttorp, P. (2007b) Geostatistical space-time models, stationarity, separability and full symmetry. InModelling Longitudinal and Spatially Correlated Data (eds B. Finkenstädt, L. Held and V. Isham ), pp. 151-175. Boca Raton: Chapman and Hall-CRC.
    • (2007) Modelling Longitudinal and Spatially Correlated Data , pp. 151-175
    • Gneiting, T.1    Genton, M.G.2    Guttorp, P.3
  • 39
    • 26844438590 scopus 로고    scopus 로고
    • Weather forecasting with ensemble methods
    • Gneiting, T. and Raftery, A. E. (2005) Weather forecasting with ensemble methods. Science, 310, 248-249.
    • (2005) Science , vol.310 , pp. 248-249
    • Gneiting, T.1    Raftery, A.E.2
  • 40
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation. J. Am. Statist. Ass., 102, 359-378.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 41
    • 35549009345 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear multivariate diffusion models observed with error
    • Golightly, A. and Wilkinson, D. (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Computnl Statist. Data Anal., 52, 1674-1693.
    • (2008) Computnl Statist. Data Anal. , vol.52 , pp. 1674-1693
    • Golightly, A.1    Wilkinson, D.2
  • 44
    • 0002897679 scopus 로고    scopus 로고
    • Verification of Eta RSM short-range ensemble forecasts
    • Hamill, T. M. and Colucci, S. J. (1997) Verification of Eta RSM short-range ensemble forecasts. Mnthly Weath. Rev., 125, 1312-1327.
    • (1997) Mnthly Weath. Rev. , vol.125 , pp. 1312-1327
    • Hamill, T.M.1    Colucci, S.J.2
  • 45
    • 1642306852 scopus 로고    scopus 로고
    • Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts
    • Hamill, T. M., Whitaker, J. S. and Wei, X. (2004) Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts. Mnthly Weath. Rev., 132, 1434-1447.
    • (2004) Mnthly Weath. Rev. , vol.132 , pp. 1434-1447
    • Hamill, T.M.1    Whitaker, J.S.2    Wei, X.3
  • 46
    • 84952117554 scopus 로고
    • A Bayesian analysis of kriging
    • Handcock, M. S. and Stein, M. L. (1993) A Bayesian analysis of kriging. Technometrics, 35, 403-410.
    • (1993) Technometrics , vol.35 , pp. 403-410
    • Handcock, M.S.1    Stein, M.L.2
  • 47
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 48
    • 0000150025 scopus 로고
    • Models for two-dimensional stationary stochastic processes
    • Heine, V. (1955) Models for two-dimensional stationary stochastic processes. Biometrika, 42, 170-178.
    • (1955) Biometrika , vol.42 , pp. 170-178
    • Heine, V.1
  • 49
    • 84917736569 scopus 로고    scopus 로고
    • Multivariate gaussian random fields using systems of stochastic partial differential equations
    • Preprint arXiv:1307.1379.
    • Hu, X., Simpson, D., Lindgren, F. and Rue, H. (2013) Multivariate gaussian random fields using systems of stochastic partial differential equations. Preprint arXiv:1307.1379.
    • (2013)
    • Hu, X.1    Simpson, D.2    Lindgren, F.a.3    Rue, H.4
  • 50
    • 1942454839 scopus 로고    scopus 로고
    • Modeling transport effects on ground-level ozone using a non-stationary space-time model
    • Huang, H.-C. and Hsu, N.-J. (2004) Modeling transport effects on ground-level ozone using a non-stationary space-time model. Environmetrics, 15, 251-268.
    • (2004) Environmetrics , vol.15 , pp. 251-268
    • Huang, H.-C.1    Hsu, N.-J.2
  • 51
    • 0028808917 scopus 로고
    • Stochastic space-time weather models from ground-based data
    • Hutchinson, M. (1995) Stochastic space-time weather models from ground-based data. Agric. Forst Meteorol., 73, 237-264.
    • (1995) Agric. Forst Meteorol. , vol.73 , pp. 237-264
    • Hutchinson, M.1
  • 53
    • 0000039489 scopus 로고    scopus 로고
    • Models for continuous stationary space-time processes
    • In (eds T. Gregoire, D. R. Brillinger, P. J. Diggle, E. Russek-Cohen, W. G. Warren and R. Wolfinger) -. New York: Springer.
    • Jones, R. and Zhang, Y. (1997) Models for continuous stationary space-time processes. In Modelling Longitudinal and Spatially Correlated Data (eds T. Gregoire, D. R. Brillinger, P. J. Diggle, E. Russek-Cohen, W. G. Warren and R. Wolfinger ), pp. 289-298. New York: Springer.
    • (1997) Modelling Longitudinal and Spatially Correlated Data , pp. 289-298
    • Jones, R.1    Zhang, Y.2
  • 54
    • 84855993199 scopus 로고    scopus 로고
    • Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting
    • Kleiber, W., Raftery, A. E. and Gneiting, T. (2011) Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting. J. Am. Statist. Ass., 106, 1291-1303.
    • (2011) J. Am. Statist. Ass. , vol.106 , pp. 1291-1303
    • Kleiber, W.1    Raftery, A.E.2    Gneiting, T.3
  • 55
    • 79960665628 scopus 로고    scopus 로고
    • Bayesian processor of output for probabilistic quantitative precipitation forecasting
    • Technical Report. Department of Systems Engineering and Department of Statistics, University of Virginia, Charlottesville.
    • Krzysztofowicz, R. and Maranzano, C. J. (2006) Bayesian processor of output for probabilistic quantitative precipitation forecasting.Technical Report. Department of Systems Engineering and Department of Statistics, University of Virginia, Charlottesville.
    • (2006)
    • Krzysztofowicz, R.1    Maranzano, C.J.2
  • 56
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • In -. Boca Raton: Chapman and Hall-CRC.
    • Künsch, H. R. (2001) State space and hidden Markov models. InComplex Stochastic Systems, pp. 109-173. Boca Raton: Chapman and Hall-CRC.
    • (2001) Complex Stochastic Systems , pp. 109-173
    • Künsch, H.R.1
  • 57
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach (with discussion)
    • Lindgren, F., Rue, H. and Lindström, J. (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach (with discussion). J. R. Statist. Soc. B, 73, 423-498.
    • (2011) J. R. Statist. Soc. B , vol.73 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 58
    • 0042208341 scopus 로고    scopus 로고
    • Families of spatio-temporal stationary covariance models
    • Ma, C. (2003) Families of spatio-temporal stationary covariance models. J. Statist. Planng Inf., 116, 489-501.
    • (2003) J. Statist. Planng Inf. , vol.116 , pp. 489-501
    • Ma, C.1
  • 59
    • 77956372069 scopus 로고    scopus 로고
    • Interpolating fields of carbon monoxide data using a hybrid statistical-physical model
    • Malmberg, A., Arellano, A., Edwards, D. P., Flyer, N., Nychka, D. and Wikle, C. (2008) Interpolating fields of carbon monoxide data using a hybrid statistical-physical model. Ann. Appl. Statist., 2, 1231-1248.
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 1231-1248
    • Malmberg, A.1    Arellano, A.2    Edwards, D.P.3    Flyer, N.4    Nychka, D.5    Wikle, C.6
  • 60
    • 0016961866 scopus 로고
    • Scoring rules for continuous probability distributions
    • Matheson, J. E. and Winkler, R. L. (1976) Scoring rules for continuous probability distributions. Mangmnt Sci., 22, 1087-1096.
    • (1976) Mangmnt Sci. , vol.22 , pp. 1087-1096
    • Matheson, J.E.1    Winkler, R.L.2
  • 62
    • 33746863011 scopus 로고    scopus 로고
    • Optimal scaling for partially updating MCMC algorithms
    • Neal, P. and Roberts, G. (2006) Optimal scaling for partially updating MCMC algorithms. Ann. Appl. Probab., 16, 475-515.
    • (2006) Ann. Appl. Probab. , vol.16 , pp. 475-515
    • Neal, P.1    Roberts, G.2
  • 63
    • 84993734384 scopus 로고    scopus 로고
    • Multiresolution models for nonstationary spatial covariance functions
    • Nychka, D., Wikle, C. and Royle, J. A. (2002) Multiresolution models for nonstationary spatial covariance functions. Statist. Modllng, 2, 315-331.
    • (2002) Statist. Modllng , vol.2 , pp. 315-331
    • Nychka, D.1    Wikle, C.2    Royle, J.A.3
  • 64
    • 34247197120 scopus 로고    scopus 로고
    • Bayesian smoothing with Gaussian processes using Fourier basis functions in the spectralGP package
    • Paciorek, C. J. (2007) Bayesian smoothing with Gaussian processes using Fourier basis functions in the spectralGP package. J. Statist. Softwr., 19, 1-38.
    • (2007) J. Statist. Softwr. , vol.19 , pp. 1-38
    • Paciorek, C.J.1
  • 65
    • 33745999511 scopus 로고    scopus 로고
    • Spatial modelling using a new class of nonstationary covariance functions
    • Paciorek, C. J. and Schervish, M. J. (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 17, 483-506.
    • (2006) Environmetrics , vol.17 , pp. 483-506
    • Paciorek, C.J.1    Schervish, M.J.2
  • 66
    • 0036541002 scopus 로고    scopus 로고
    • The economic value of ensemble forecasts as a tool for risk assessment: from days to decades
    • Palmer, T. N. (2002) The economic value of ensemble forecasts as a tool for risk assessment: from days to decades. Q. J. R. Meteorol. Soc., 128, 747-774.
    • (2002) Q. J. R. Meteorol. Soc. , vol.128 , pp. 747-774
    • Palmer, T.N.1
  • 68
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Ramrez, M. C. V., de Campos Velho, H. F. and Ferreira, N. J. (2005) Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol., 301, 146-162.
    • (2005) J. Hydrol. , vol.301 , pp. 146-162
    • Ramrez, M.C.V.1    de Campos Velho, H.F.2    Ferreira, N.J.3
  • 70
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • Roberts, G. O. and Rosenthal, J. S. (2001) Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci., 16, 351-367.
    • (2001) Statist. Sci. , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 72
    • 10244252366 scopus 로고    scopus 로고
    • On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm
    • Roberts, G. O. and Stramer, O. (2001) On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm. Biometrika, 88, 603-621.
    • (2001) Biometrika , vol.88 , pp. 603-621
    • Roberts, G.O.1    Stramer, O.2
  • 73
    • 20344397922 scopus 로고    scopus 로고
    • Efficient statistical mapping of avian count data
    • Royle, J. A. and Wikle, C. K. (2005) Efficient statistical mapping of avian count data. Environ. Ecol. Statist., 12, 225-243.
    • (2005) Environ. Ecol. Statist. , vol.12 , pp. 225-243
    • Royle, J.A.1    Wikle, C.K.2
  • 75
    • 0036522614 scopus 로고    scopus 로고
    • Fitting Gaussian Markov random fields to Gaussian fields
    • Rue, H. and Tjelmeland, H. (2002) Fitting Gaussian Markov random fields to Gaussian fields. Scand. J. Statist., 29, 31-49.
    • (2002) Scand. J. Statist. , vol.29 , pp. 31-49
    • Rue, H.1    Tjelmeland, H.2
  • 76
    • 0000832522 scopus 로고
    • Nonparametric estimation of nonstationary spatial covariance structure
    • Sampson, P. D. and Guttorp, P. (1992) Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Statist. Ass., 87, 108-119.
    • (1992) J. Am. Statist. Ass. , vol.87 , pp. 108-119
    • Sampson, P.D.1    Guttorp, P.2
  • 77
    • 0033426717 scopus 로고    scopus 로고
    • Venezuelan rainfall data analysed by using a Bayesian space-time model
    • Sansó, B. and Guenni, L. (1999) Venezuelan rainfall data analysed by using a Bayesian space-time model. Appl. Statist., 48, 345-362.
    • (1999) Appl. Statist. , vol.48 , pp. 345-362
    • Sansó, B.1    Guenni, L.2
  • 78
    • 4544259894 scopus 로고    scopus 로고
    • A Bayesian approach to compare observed rainfall data to deterministic simulations
    • Sansó, B. and Guenni, L. (2004) A Bayesian approach to compare observed rainfall data to deterministic simulations. Environmetrics, 15, 597-612.
    • (2004) Environmetrics , vol.15 , pp. 597-612
    • Sansó, B.1    Guenni, L.2
  • 80
    • 84901044954 scopus 로고    scopus 로고
    • A dynamic nonstationary spatio-temporal model for short term prediction of precipitation
    • Sigrist, F., Künsch, H. R. and Stahel, W. A. (2012) A dynamic nonstationary spatio-temporal model for short term prediction of precipitation. Ann. Appl. Statist., 6, 1452-1477.
    • (2012) Ann. Appl. Statist. , vol.6 , pp. 1452-1477
    • Sigrist, F.1    Künsch, H.R.2    Stahel, W.A.3
  • 81
    • 84917684020 scopus 로고    scopus 로고
    • spate: an R package for statistical modeling with SPDE based spatio-temporal Gaussian processes
    • Technical Report. Seminar für Statistik, Eidgenössiche Technische Hochschule Zürich, Zurich. (Available from
    • Sigrist, F., Künsch, H. R. and Stahel, W. A. (2012) spate: an R package for statistical modeling with SPDE based spatio-temporal Gaussian processes. Technical Report. Seminar für Statistik, Eidgenössiche Technische Hochschule Zürich, Zurich. (Available from http://stat.ethz.ch/people/sigrist/spate.pdf.)
    • (2012)
    • Sigrist, F.1    Künsch, H.R.2    Stahel, W.A.3
  • 82
    • 84855962617 scopus 로고    scopus 로고
    • In order to make spatial statistics computationally feasible, we need to forget about the covariance function
    • Simpson, D., Lindgren, F. and Rue, H. (2012) In order to make spatial statistics computationally feasible, we need to forget about the covariance function. Environmetrics, 23, 65-74.
    • (2012) Environmetrics , vol.23 , pp. 65-74
    • Simpson, D.1    Lindgren, F.2    Rue, H.3
  • 83
    • 34248354794 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation forecasting using Bayesian model averaging
    • Sloughter, J. M., Raftery, A. E., Gneiting, T. and Fraley, C. (2007) Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mnthly Weath. Rev., 135, 3209-3220.
    • (2007) Mnthly Weath. Rev. , vol.135 , pp. 3209-3220
    • Sloughter, J.M.1    Raftery, A.E.2    Gneiting, T.3    Fraley, C.4
  • 84
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith, A. F. M. and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Statist. Soc. B, 55, 3-23.
    • (1993) J. R. Statist. Soc. B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 85
    • 0030537976 scopus 로고    scopus 로고
    • Time trend estimation for a geographic region
    • Solna, K. and Switzer, P. (1996) Time trend estimation for a geographic region. J. Am. Statist. Ass., 91, 577-589.
    • (1996) J. Am. Statist. Ass. , vol.91 , pp. 577-589
    • Solna, K.1    Switzer, P.2
  • 87
    • 14944355575 scopus 로고    scopus 로고
    • Space-time covariance functions
    • Stein, M. L. (2005) Space-time covariance functions. J. Am. Statist. Ass., 100, 310-321.
    • (2005) J. Am. Statist. Ass. , vol.100 , pp. 310-321
    • Stein, M.L.1
  • 88
    • 37849010186 scopus 로고    scopus 로고
    • A modeling approach for large spatial datasets
    • Stein, M. L. (2008) A modeling approach for large spatial datasets. J. Kor. Statist. Soc., 37, 3-10.
    • (2008) J. Kor. Statist. Soc. , vol.37 , pp. 3-10
    • Stein, M.L.1
  • 89
    • 2442600120 scopus 로고    scopus 로고
    • Approximating likelihoods for large spatial data sets
    • Stein, M. L., Chi, Z. and Welty, L. J. (2004) Approximating likelihoods for large spatial data sets. J. R. Statist. Soc. B, 66, 275-296.
    • (2004) J. R. Statist. Soc. B , vol.66 , pp. 275-296
    • Stein, M.L.1    Chi, Z.2    Welty, L.J.3
  • 90
    • 33947269252 scopus 로고    scopus 로고
    • Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecasting system
    • Stensrud, D. J. and Yussouf, N. (2007) Reliable probabilistic quantitative precipitation forecasts from a short-range ensemble forecasting system. Weath. Forecast., 22, 2-17.
    • (2007) Weath. Forecast. , vol.22 , pp. 2-17
    • Stensrud, D.J.1    Yussouf, N.2
  • 92
    • 0001578107 scopus 로고
    • Estimating the precipitation climate
    • Stidd, C. K. (1973) Estimating the precipitation climate. Wat. Resour. Res., 9, 1235-1241.
    • (1973) Wat. Resour. Res. , vol.9 , pp. 1235-1241
    • Stidd, C.K.1
  • 93
    • 84993720583 scopus 로고    scopus 로고
    • Stationary space-time Gaussian fields and their time autoregressive representation
    • Storvik, G., Frigessi, A. and Hirst, D. (2002) Stationary space-time Gaussian fields and their time autoregressive representation. Statist. Modllng, 2, 139-161.
    • (2002) Statist. Modllng , vol.2 , pp. 139-161
    • Storvik, G.1    Frigessi, A.2    Hirst, D.3
  • 95
    • 0000175291 scopus 로고
    • Estimation of relationships for limited dependent variables
    • Tobin, J. (1958) Estimation of relationships for limited dependent variables. Econometrica, 26, 24-36.
    • (1958) Econometrica , vol.26 , pp. 24-36
    • Tobin, J.1
  • 96
    • 0000497615 scopus 로고
    • Estimation and model identification for continuous spatial processes
    • Vecchia, A. V. (1988) Estimation and model identification for continuous spatial processes. J. R. Statist. Soc. B, 50, 297-312.
    • (1988) J. R. Statist. Soc. B , vol.50 , pp. 297-312
    • Vecchia, A.V.1
  • 97
    • 80054745126 scopus 로고    scopus 로고
    • Spatiotemporal models for gaussian areal data
    • Vivar, J. C. and Ferreira, M. A. R. (2009) Spatiotemporal models for gaussian areal data. J. Computnl Graph. Statist., 18, 658-674.
    • (2009) J. Computnl Graph. Statist. , vol.18 , pp. 658-674
    • Vivar, J.C.1    Ferreira, M.A.R.2
  • 98
    • 0001760833 scopus 로고
    • On stationary processes in the plane
    • Whittle, P. (1954) On stationary processes in the plane. Biometrika, 41, 434-449.
    • (1954) Biometrika , vol.41 , pp. 434-449
    • Whittle, P.1
  • 99
    • 0001633388 scopus 로고
    • Topographic correlation, power-law covariance functions, and diffusion
    • Whittle, P. (1962) Topographic correlation, power-law covariance functions, and diffusion. Biometrika, 49, 305-314.
    • (1962) Biometrika , vol.49 , pp. 305-314
    • Whittle, P.1
  • 100
    • 0008976275 scopus 로고
    • Stochastic processes in several dimensions
    • Whittle, P. (1963) Stochastic processes in several dimensions. Bull. Inst. Int. Statist., 40, 974-994.
    • (1963) Bull. Inst. Int. Statist. , vol.40 , pp. 974-994
    • Whittle, P.1
  • 101
    • 84993723115 scopus 로고    scopus 로고
    • A kernel-based spectral model for non-gaussian spatio-temporal processes
    • Wikle, C. K. (2002) A kernel-based spectral model for non-gaussian spatio-temporal processes. Statist. Modllng, 2, 299-314.
    • (2002) Statist. Modllng , vol.2 , pp. 299-314
    • Wikle, C.K.1
  • 102
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • Wikle, C. K. (2003) Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology, 84, 1382-1394.
    • (2003) Ecology , vol.84 , pp. 1382-1394
    • Wikle, C.K.1
  • 103
    • 79958225750 scopus 로고    scopus 로고
    • Low-rank representations for spatial processes
    • In(eds A. E. Gelfand, P. Diggle, P. Guttorp and M. Fuentes) -. Boca Raton: Chapman and Hall-CRC.
    • Wikle, C. (2010) Low-rank representations for spatial processes. InHandbook of Spatial Statistics(eds A. E. Gelfand, P. Diggle, P. Guttorp and M. Fuentes ), pp. 107-118. Boca Raton: Chapman and Hall-CRC.
    • (2010) Handbook of Spatial Statistics , pp. 107-118
    • Wikle, C.1
  • 105
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • Wikle, C. K. and Cressie, N. (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika, 86, 815-829.
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.K.1    Cressie, N.2
  • 106
    • 78449244115 scopus 로고    scopus 로고
    • A general science-based framework for dynamical spatiotemporal models
    • Wikle, C. and Hooten, M. (2010) A general science-based framework for dynamical spatiotemporal models. Test, 19, 417-451.
    • (2010) Test , vol.19 , pp. 417-451
    • Wikle, C.1    Hooten, M.2
  • 107
    • 1542469523 scopus 로고    scopus 로고
    • Spatiotemporal hierarchical bayesian modeling: tropical ocean surface winds
    • Wikle, C. K., Milliff, R. F., Nychka, D. and Berliner, L. M. (2001) Spatiotemporal hierarchical bayesian modeling: tropical ocean surface winds. J. Am. Statist. Ass., 96, 382-397.
    • (2001) J. Am. Statist. Ass. , vol.96 , pp. 382-397
    • Wikle, C.K.1    Milliff, R.F.2    Nychka, D.3    Berliner, L.M.4
  • 108
    • 0000576253 scopus 로고
    • Maximum likelihood estimation for the gamma distribution using data containing zeros
    • Wilks, D. (1990) Maximum likelihood estimation for the gamma distribution using data containing zeros. J. Clim., 3, 1495-1501.
    • (1990) J. Clim. , vol.3 , pp. 1495-1501
    • Wilks, D.1
  • 109
    • 0033594165 scopus 로고    scopus 로고
    • Multisite downscaling of daily precipitation with a stochastic weather generator
    • Wilks, D. (1999) Multisite downscaling of daily precipitation with a stochastic weather generator. Clim. Res., 11, 125-136.
    • (1999) Clim. Res. , vol.11 , pp. 125-136
    • Wilks, D.1
  • 110
    • 33749362015 scopus 로고    scopus 로고
    • Estimation of parameterized spatio-temporal dynamic models
    • Xu, K. and Wikle, C. K. (2007) Estimation of parameterized spatio-temporal dynamic models. J. Statist. Planng Inf., 137, 567-588.
    • (2007) J. Statist. Planng Inf. , vol.137 , pp. 567-588
    • Xu, K.1    Wikle, C.K.2
  • 111
    • 29144508557 scopus 로고    scopus 로고
    • A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities
    • Xu, K., Wikle, C. K. and Fox, N. I. (2005) A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J. Am. Statist. Ass., 100, 1133-1144.
    • (2005) J. Am. Statist. Ass. , vol.100 , pp. 1133-1144
    • Xu, K.1    Wikle, C.K.2    Fox, N.I.3
  • 112
    • 84890565304 scopus 로고    scopus 로고
    • Bayesian adaptive smoothing spline using stochastic differential equations
    • Preprint arXiv:1209.2013.
    • Yue, Y. R., Simpson, D., Lindgren, F. and Rue, H. (2012) Bayesian adaptive smoothing spline using stochastic differential equations. Preprint arXiv:1209.2013.
    • (2012)
    • Yue, Y.R.1    Simpson, D.2    Lindgren, F.3    Rue, H.4
  • 113
    • 33845443334 scopus 로고    scopus 로고
    • Prediction of near-surface variables at independent locations from a bias-corrected ensemble forecasting system
    • Yussouf, N. and Stensrud, D. J. (2006) Prediction of near-surface variables at independent locations from a bias-corrected ensemble forecasting system. Mnthly Weath. Rev., 134, 3415-3424.
    • (2006) Mnthly Weath. Rev. , vol.134 , pp. 3415-3424
    • Yussouf, N.1    Stensrud, D.J.2
  • 114
    • 78650652746 scopus 로고    scopus 로고
    • Hierarchical dynamic modeling of outbreaks of mountain pine beetle using partial differential equations
    • Zheng, Y. and Aukema, B. H. (2010) Hierarchical dynamic modeling of outbreaks of mountain pine beetle using partial differential equations. Environmetrics, 21, 801-816.
    • (2010) Environmetrics , vol.21 , pp. 801-816
    • Zheng, Y.1    Aukema, B.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.