메뉴 건너뛰기




Volumn 28, Issue 4, 2013, Pages 616-640

Uncertainty quantification in complex simulation models using ensemble copula coupling

Author keywords

Bayesian model averaging; Empirical copula; Ensemble calibration; Nonhomogeneous regression; Numerical weather prediction; Probabilistic forecast; Schaake shuffle; Sklar's theorem

Indexed keywords


EID: 84891800962     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-STS443     Document Type: Article
Times cited : (252)

References (95)
  • 1
    • 63649120808 scopus 로고    scopus 로고
    • Pair-copula constructions of multiple dependence
    • MR2517884
    • AAS, K., CZADO, C., FRIGESSI, A. and BAKKEN, H. (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44 182-198. MR2517884
    • (2009) Insurance Math. Econom. , vol.44 , pp. 182-198
    • Aas, K.1    Czado, C.2    Frigessi, A.3    Bakken, H.4
  • 2
    • 77955580560 scopus 로고    scopus 로고
    • Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction
    • BAO, L., GNEITING, T., GRIMIT, E. P., GUTTORP, P. and RAFTERY, A. E. (2010). Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction. Monthly Weather Review 138 1811-1821.
    • (2010) Monthly Weather Review , vol.138 , pp. 1811-1821
    • Bao, L.1    Gneiting, T.2    Grimit, E.P.3    Guttorp, P.4    Raftery, A.E.5
  • 3
    • 84878211403 scopus 로고    scopus 로고
    • Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms
    • BEN BOUALLèGUE, Z. (2013). Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms. Weather and Forecasting 28 515-524.
    • (2013) Weather and Forecasting , vol.28 , pp. 515-524
    • Ben Bouallègue, Z.1
  • 4
    • 34248349570 scopus 로고    scopus 로고
    • Combining spatial statistical and ensemble information in probabilistic weather forecasts
    • BERROCAL, V. J., RAFTERY, A. E. and GNEITING, T. (2007). Combining spatial statistical and ensemble information in probabilistic weather forecasts. Monthly Weather Review 135 1386- 1402.
    • (2007) Monthly Weather Review , vol.135
    • Berrocal, V.J.1    Raftery, A.E.2    Gneiting, T.3
  • 5
    • 77950950767 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation field forecasting using a two-stage spatial model
    • MR2655654
    • BERROCAL, V. J., RAFTERY, A. E. and GNEITING, T. (2008). Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann. Appl. Stat. 2 1170-1193. MR2655654
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 1170-1193
    • Berrocal, V.J.1    Raftery, A.E.2    Gneiting, T.3
  • 6
    • 78649406551 scopus 로고    scopus 로고
    • Probabilistic weather forecasting for winter road maintenance
    • MR2724842
    • BERROCAL, V. J., RAFTERY, A. E., GNEITING, T. and STEED, R. C. (2010). Probabilistic weather forecasting for winter road maintenance. J. Amer. Statist. Assoc. 105 522-537. MR2724842
    • (2010) J. Amer. Statist. Assoc. , vol.105 , pp. 522-537
    • Berrocal, V.J.1    Raftery, A.E.2    Gneiting, T.3    Steed, R.C.4
  • 7
    • 1842483168 scopus 로고    scopus 로고
    • Probabilistic forecasts of precipitation in terms of quantiles using NWP model output
    • BREMNES, J. B. (2004). Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Monthly Weather Review 132 338-347.
    • (2004) Monthly Weather Review , vol.132 , pp. 338-347
    • Bremnes, J.B.1
  • 8
    • 84867970319 scopus 로고    scopus 로고
    • Improved calibration of precipitation forecasts using ensemble techniques
    • Part 2: Statistical calibration methods. Technical Report 04/2007, Norwegian Meteorological Institute
    • BREMNES, J. B. (2007). Improved calibration of precipitation forecasts using ensemble techniques. Part 2: Statistical calibration methods. Technical Report 04/2007, Norwegian Meteorological Institute.
    • (2007)
    • Bremnes, J.B.1
  • 9
    • 84866159248 scopus 로고    scopus 로고
    • Evaluating raw ensembles with the continuous ranked probability score
    • BRöCKER, J. (2012). Evaluating raw ensembles with the continuous ranked probability score. Quarterly Journal of the Royal Meteorological Society 138 1611-1617.
    • (2012) Quarterly Journal of the Royal Meteorological Society , vol.138 , pp. 1611-1617
    • Bröcker, J.1
  • 10
    • 47949105776 scopus 로고    scopus 로고
    • From ensemble forecasts to predictive distribution functions
    • BRöCKER, J. and SMITH, L. A. (2008). From ensemble forecasts to predictive distribution functions. Tellus Ser. A 60 663-678.
    • (2008) Tellus Ser. A , vol.60 , pp. 663-678
    • Bröcker, J.1    Smith, L.A.2
  • 12
    • 84949548521 scopus 로고    scopus 로고
    • Geostatistics: Modeling Spatial Uncertainty
    • 2nd ed,Wiley, Hoboken, NJ. MR2850475
    • CHILèS, J.-P. and DELFINER, P. (2012). Geostatistics: Modeling Spatial Uncertainty, 2nd ed. Wiley, Hoboken, NJ. MR2850475
    • (2012)
    • Chilès, J.P.1    Delfiner, P.2
  • 13
    • 79958715223 scopus 로고    scopus 로고
    • Probabilistic visibility forecasting using Bayesian model averaging
    • CHMIELECKI, R. M. and RAFTERY, A. E. (2011). Probabilistic visibility forecasting using Bayesian model averaging. Monthly Weather Review 139 1626-1636.
    • (2011) Monthly Weather Review , vol.139 , pp. 1626-1636
    • Chmielecki, R.M.1    Raftery, A.E.2
  • 14
    • 1642284456 scopus 로고    scopus 로고
    • The Schaake shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields
    • CLARK, M., GANGOPADHYAY, S., HAY, L., RAJAGOPALAN, B. and WILBY, R. (2004). The Schaake shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields. Journal of Hydrometeorology 5 243- 262.
    • (2004) Journal of Hydrometeorology , vol.5
    • Clark, M.1    Gangopadhyay, S.2    Hay, L.3    Rajagopalan, B.4    Wilby, R.5
  • 15
    • 69349101904 scopus 로고    scopus 로고
    • Ensemble flood forecasting: A review
    • CLOKE, H. L. and PAPPENBERGER, F. (2009). Ensemble flood forecasting: A review. Journal of Hydrology 375 613-626.
    • (2009) Journal of Hydrology , vol.375 , pp. 613-626
    • Cloke, H.L.1    Pappenberger, F.2
  • 16
    • 0004468393 scopus 로고
    • Forecasts and verifications in Western Australia
    • COOKE, R. (1906). Forecasts and verifications in Western Australia. Monthly Weather Review 34 23-24.
    • (1906) Monthly Weather Review , vol.34 , pp. 23-24
    • Cooke, R.1
  • 17
    • 79953127706 scopus 로고    scopus 로고
    • Statistics for Spatio- Temporal Data
    • Wiley, Hoboken, NJ. MR2848400
    • CRESSIE, N. and WIKLE, C. K. (2011). Statistics for Spatio- Temporal Data. Wiley, Hoboken, NJ. MR2848400
    • (2011)
    • Cressie, N.1    Wikle, C.K.2
  • 18
    • 70450231574 scopus 로고    scopus 로고
    • Predictive model assessment for count data
    • MR2756513
    • CZADO, C., GNEITING, T. and HELD, L. (2009). Predictive model assessment for count data. Biometrics 65 1254-1261. MR2756513
    • (2009) Biometrics , vol.65 , pp. 1254-1261
    • Czado, C.1    Gneiting, T.2    Held, L.3
  • 19
    • 84866270052 scopus 로고    scopus 로고
    • Statistical modeling of spatial extremes
    • MR2963980
    • DAVISON, A. C., PADOAN, S. A. and RIBATET, M. (2012). Statistical modeling of spatial extremes. Statist. Sci. 27 161-186. MR2963980
    • (2012) Statist. Sci. , vol.27 , pp. 161-186
    • Davison, A.C.1    Padoan, S.A.2    Ribatet, M.3
  • 22
    • 34547904994 scopus 로고    scopus 로고
    • Probabilistic aspects of meteorological and ozone regional ensemble forecasts
    • Research 111 D24307
    • DELLE MONACHE, L., HACKER, J. P., ZHOU, Y., DENG, X. and STULL, R. B. (2006). Probabilistic aspects of meteorological and ozone regional ensemble forecasts. Journal of Geophysical Research 111 D24307.
    • (2006) Journal of Geophysical
    • Delle, M.L.1    Hacker, J.P.2    Zhou, Y.3    Deng, X.4    Stull, R.B.5
  • 24
    • 42149185517 scopus 로고    scopus 로고
    • Non-crossing nonparametric estimates of quantile curves
    • MR2420417
    • DETTE, H. and VOLGUSHEV, S. (2008). Non-crossing nonparametric estimates of quantile curves. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 609-627. MR2420417
    • (2008) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.70 , pp. 609-627
    • Dette, H.1    Volgushev, S.2
  • 25
    • 77955993920 scopus 로고    scopus 로고
    • A Bayesian hierarchical approach to ensemble weather forecasting
    • MR2756542
    • DI NARZO, A. F. andCOCCHI, D. (2010). A Bayesian hierarchical approach to ensemble weather forecasting. J. R. Stat. Soc. Ser. C. Appl. Stat. 59 405-422. MR2756542
    • (2010) J. R. Stat. Soc. Ser. C. Appl. Stat. , vol.59 , pp. 405-422
    • Di, N.A.F.1    Cocchi, D.2
  • 26
    • 23144455758 scopus 로고    scopus 로고
    • Aspects of effective mesoscale, short-range ensemble forecasting
    • ECKEL, A. F. and MASS, C. F. (2005). Aspects of effective mesoscale, short-range ensemble forecasting. Weather and Forecasting 20 328-350.
    • (2005) Weather and Forecasting , vol.20 , pp. 328-350
    • Eckel, A.F.1    Mass, C.F.2
  • 27
    • 20444459804 scopus 로고    scopus 로고
    • Weak convergence of empirical copula processes
    • Bernoulli 10 847-860. MR2093613
    • FERMANIAN, J.-D., RADULOVÍC , D. andWEGKAMP, M. (2004). Weak convergence of empirical copula processes. Bernoulli 10 847-860. MR2093613
    • (2004)
    • Fermanian, J.-D.1    RadulovíC, D.2    Wegkamp, M.3
  • 28
    • 84891794060 scopus 로고    scopus 로고
    • Calibration and combination of mediumrange ensemble precipitation forecasts
    • Technical Report 567, United Kingdom Met Office.
    • FLOWERDEW, J. (2012). Calibration and combination of mediumrange ensemble precipitation forecasts. Technical Report 567, United Kingdom Met Office.
    • (2012)
    • Flowerdew, J.1
  • 29
    • 77953220812 scopus 로고    scopus 로고
    • Calibrating multi-model forecast ensembles with exchangeable and missing members using Bayesian model averaging
    • FRALEY, C., RAFTERY, A. E. and GNEITING, T. (2010). Calibrating multi-model forecast ensembles with exchangeable and missing members using Bayesian model averaging. Monthly Weather Review 138 190-202.
    • (2010) Monthly Weather Review , vol.138 , pp. 190-202
    • Fraley, C.1    Raftery, A.E.2    Gneiting, T.3
  • 31
    • 4944237404 scopus 로고    scopus 로고
    • Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation (GOP) method (with discussion and rejoinder)
    • GEL, Y., RAFTERY, A. E. and GNEITING, T. (2004). Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation (GOP) method (with discussion and rejoinder). J. Amer. Statist. Assoc. 99 575-590.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 575-590
    • Gel, Y.1    Raftery, A.E.2    Gneiting, T.3
  • 32
    • 34347377353 scopus 로고    scopus 로고
    • Everything you always wanted to know about copula modeling but were afraid to ask
    • GENEST, C. and FAVRE, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering 12 347-368.
    • (2007) Journal of Hydrologic Engineering , vol.12 , pp. 347-368
    • Genest, C.1    Favre, A.C.2
  • 34
    • 40549093626 scopus 로고    scopus 로고
    • Editorial: Probabilistic forecasting
    • MR2427336
    • GNEITING, T. (2008). Editorial: Probabilistic forecasting. J. Roy. Statist. Soc. Ser. A 171 319-321. MR2427336
    • (2008) J. Roy. Statist. Soc. Ser. A , vol.171 , pp. 319-321
    • Gneiting, T.1
  • 35
    • 79960137323 scopus 로고    scopus 로고
    • Making and evaluating point forecasts
    • MR2847988
    • GNEITING, T. (2011). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746-762. MR2847988
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 746-762
    • Gneiting, T.1
  • 37
    • 26844438590 scopus 로고    scopus 로고
    • Weather forecasting with ensemble methods
    • GNEITING, T. and RAFTERY, A. E. (2005). Weather forecasting with ensemble methods. Science 310 248-249.
    • (2005) Science , vol.310 , pp. 248-249
    • Gneiting, T.1    Raftery, A.E.2
  • 38
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • MR2345548
    • GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378. MR2345548
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 39
    • 20444484849 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
    • GNEITING, T., RAFTERY, A. E.,WESTVELD, A. H. and GOLDMAN, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review 133 1098-1118.
    • (2005) Monthly Weather Review , vol.133 , pp. 1098-1118
    • Gneiting, T.1    Raftery, A.E.2    Westveld, A.H.3    Goldman, T.4
  • 40
    • 48349105056 scopus 로고    scopus 로고
    • Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder)
    • TEST 17 211-264.
    • GNEITING, T., STANBERRY, L. I., GRIMIT, E. P., HELD, L. and JOHNSON, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder). TEST 17 211-264.
    • (2008)
    • Gneiting, T.1    Stanberry, L.I.2    Grimit, E.P.3    Held, L.4    Johnson, N.A.5
  • 41
    • 0003489629 scopus 로고    scopus 로고
    • Foundations of Quantization for Probability Distributions
    • Lecture Notes in Math. 1730. Springer, Berlin. MR1764176
    • GRAF, S. and LUSCHGY, H. (2000). Foundations of Quantization for Probability Distributions. Lecture Notes in Math. 1730. Springer, Berlin. MR1764176
    • (2000)
    • Graf, S.1    Luschgy, H.2
  • 44
    • 0035270069 scopus 로고    scopus 로고
    • Interpretation of rank histograms for verifying ensemble forecasts
    • HAMILL, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review 129 550- 560.
    • (2001) Monthly Weather Review , vol.129
    • Hamill, T.M.1
  • 45
    • 0002897679 scopus 로고    scopus 로고
    • Verification of Eta- RSM short-range ensemble forecasts
    • HAMILL, T. M. and COLUCCI, S. J. (1997). Verification of Eta- RSM short-range ensemble forecasts. Monthly Weather Review 125 1312-1327.
    • (1997) Monthly Weather Review , vol.125 , pp. 1312-1327
    • Hamill, T.M.1    Colucci, S.J.2
  • 48
    • 0003792072 scopus 로고    scopus 로고
    • Multivariate Models and Dependence Concepts
    • Monographs on Statistics and Applied Probability 73. Chapman & Hall, London. MR1462613
    • JOE, H. (1997). Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability 73. Chapman & Hall, London. MR1462613
    • (1997)
    • Joe, H.1
  • 49
    • 0008510807 scopus 로고    scopus 로고
    • Atmospheric Modeling, Data Assimilation and Predictability
    • Cambridge Univ. Press, Cambridge.
    • KALNAY, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univ. Press, Cambridge.
    • (2003)
    • Kalnay, E.1
  • 50
    • 70449105760 scopus 로고    scopus 로고
    • Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis
    • KANN, A.,WITTMANN, C.,WANG, Y. andMA, X. (2009). Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis. Monthly Weather Review 137 3373-3387.
    • (2009) Monthly Weather Review , vol.137 , pp. 3373-3387
    • Kann, A.1    Ittmann, C.2    Ang, Y.3    Ma, X.4
  • 51
    • 84855993199 scopus 로고    scopus 로고
    • Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting
    • MR2896836
    • KLEIBER, W., RAFTERY, A. E. and GNEITING, T. (2011). Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting. J. Amer. Statist. Assoc. 106 1291-1303. MR2896836
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 1291-1303
    • Kleiber, W.1    Raftery, A.E.2    Gneiting, T.3
  • 52
    • 80052419057 scopus 로고    scopus 로고
    • Locally calibrated probabilistic temperature foreasting using geostatistical model averaging and local Bayesian model averaging
    • KLEIBER, W., RAFTERY, A. E., BAARS, J., GNEITING, T., MASS, C. and GRIMIT, E. P. (2011). Locally calibrated probabilistic temperature foreasting using geostatistical model averaging and local Bayesian model averaging. Monthly Weather Review 139 2630-2649.
    • (2011) Monthly Weather Review , vol.139 , pp. 2630-2649
    • Kleiber, W.1    Raftery, A.E.2    Baars, J.3    Gneiting, T.4    Mass, C.5    Grimit, E.P.6
  • 54
    • 84891778723 scopus 로고    scopus 로고
    • Bayesian processor of ensemble (BPE): Concept and implementation
    • Slides presented at the 4th NCEP/NWS Ensemble User Workshop, Laurel, MD.
    • KRZYSZTOFOWICZ, R. and TOTH, Z. (2008). Bayesian processor of ensemble (BPE): Concept and implementation. Slides presented at the 4th NCEP/NWS Ensemble User Workshop, Laurel, MD.
    • (2008)
    • Krzysztofowicz, R.1    Toth, Z.2
  • 55
    • 39549083006 scopus 로고    scopus 로고
    • Ensemble forecasting
    • MR2400226
    • LEUTBECHER, M. and PALMER, T. N. (2008). Ensemble forecasting. J. Comput. Phys. 227 3515-3539. MR2400226
    • (2008) J. Comput. Phys. , vol.227 , pp. 3515-3539
    • Leutbecher, M.1    Palmer, T.N.2
  • 57
    • 84997771370 scopus 로고    scopus 로고
    • Quantitative Risk Management: Concepts, Techniques and Tools
    • Princeton Univ. Press, Princeton, NJ. MR2175089
    • MCNEIL, A. J., FREY, R. and EMBRECHTS, P. (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton Univ. Press, Princeton, NJ. MR2175089
    • (2005)
    • Mcneil, A.J.1    Frey, R.2    Embrechts, P.3
  • 58
    • 68049091067 scopus 로고    scopus 로고
    • Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions
    • MR2541455
    • MCNEIL, A. J. and NEšLEHOVá, J. (2009). Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions. Ann. Statist. 37 3059-3097. MR2541455
    • (2009) Ann. Statist. , vol.37 , pp. 3059-3097
    • Mcneil, A.J.1    Nešlehová, J.2
  • 61
    • 0004156740 scopus 로고    scopus 로고
    • An Introduction to Copulas, 2nd ed
    • Springer, New York. MR2197664
    • NELSEN, R. B. (2006). An Introduction to Copulas, 2nd ed. Springer, New York. MR2197664
    • (2006)
    • Nelsen, R.B.1
  • 62
    • 0036541002 scopus 로고    scopus 로고
    • The economic value of ensemble forecasts as a tool for risk assessment: From days to decades
    • PALMER, T. N. (2002). The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Quarterly Journal of the Royal Meteorological Society 128 747-774.
    • (2002) Quarterly Journal of the Royal Meteorological Society , vol.128 , pp. 747-774
    • Palmer, T.N.1
  • 64
    • 84891809865 scopus 로고    scopus 로고
    • Wind energy: Forecasting challenges for its operational management
    • PINSON, P. (2013).Wind energy: Forecasting challenges for its operational management. Statist. Sci. 28 564-585.
    • (2013) Statist. Sci. , vol.28 , pp. 564-585
    • Pinson, P.1
  • 65
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • PINSON, P., MADSEN, H., NIELSEN, H. A., PAPAEFTHYMIOU, G. and KLöCKL, B. (2009). From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 12 51-62.
    • (2009) Wind Energy , vol.12 , pp. 51-62
    • Pinson, P.1    Madsen, H.2    Nielsen, H.A.3    Papaefthymiou, G.4    Klöckl, B.5
  • 66
    • 77949408057 scopus 로고    scopus 로고
    • Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill
    • MR2654989
    • RAFTERY, A. E., KáRNý, M. and ETTLER, P. (2010). Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill. Technometrics 52 52-66. MR2654989
    • (2010) Technometrics , vol.52 , pp. 52-66
    • Raftery, A.E.1    Kárný, M.2    Ettler, P.3
  • 68
    • 65249103483 scopus 로고    scopus 로고
    • A local ensemble prediction system for fog and low clouds: Construction, Bayesian model averaging calibration, and validation
    • ROQUELAURE, S. and BERGOT, T. (2008). A local ensemble prediction system for fog and low clouds: Construction, Bayesian model averaging calibration, and validation. Journal of Applied Meteorology and Climatology 47 3072-3088.
    • (2008) Journal of Applied Meteorology and Climatology , vol.47 , pp. 3072-3088
    • Roquelaure, S.1    Bergot, T.2
  • 69
    • 84857969929 scopus 로고    scopus 로고
    • Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts
    • ROULIN, E. andVANNITSEM, S. (2012). Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Monthly Weather Review 140 874-888.
    • (2012) Monthly Weather Review , vol.140 , pp. 874-888
    • Roulin, E.1    Annitsem, S.2
  • 70
    • 84865796392 scopus 로고    scopus 로고
    • How sensitive are probabilistic precipitation forecasts to the choice of calibration algorithms and the ensemble generation method? Part I: Sensitivity to calibration methods
    • RUIZ, J. J. and SAULO, C. (2012). How sensitive are probabilistic precipitation forecasts to the choice of calibration algorithms and the ensemble generation method? Part I: Sensitivity to calibration methods. Meteorological Applications 19 302-313.
    • (2012) Meteorological Applications , vol.19 , pp. 302-313
    • Ruiz, J.J.1    Saulo, C.2
  • 71
    • 0009613141 scopus 로고
    • Asymptotic distributions of multivariate rank order statistics
    • MR0420794
    • RüSCHENDORF, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Statist. 4 912-923. MR0420794
    • (1976) Ann. Statist. , vol.4 , pp. 912-923
    • Rüschendorf, L.1
  • 72
    • 68049105110 scopus 로고    scopus 로고
    • On the distributional transform, Sklar's theorem, and the empirical copula process
    • MR2553778
    • RüSCHENDORF, L. (2009). On the distributional transform, Sklar's theorem, and the empirical copula process. J. Statist. Plann. Inference 139 3921-3927. MR2553778
    • (2009) J. Statist. Plann. , vol.139 , pp. 3921-3927
    • Rüschendorf, L.1
  • 74
    • 77954433512 scopus 로고    scopus 로고
    • Summary of recommendations of the first Workshop on Postprocessing and Downscaling Atmospheric Forecasts for Hydrologic Applications held at Météo- France, Toulouse, France, 15-18 June 2009
    • Atmospheric Science Letters 11 59-63.
    • SCHAAKE, J., PAILLEUX, J., THIELEN, J., ARRITT, R., HAMILL, T., LUO, L., MARTIN, E., MCCOLLOR, D. and PAPPENBERGER, F. (2010). Summary of recommendations of the first Workshop on Postprocessing and Downscaling Atmospheric Forecasts for Hydrologic Applications held at Météo- France, Toulouse, France, 15-18 June 2009. Atmospheric Science Letters 11 59-63.
    • (2010)
    • Schaake, J.1    Pailleux, J.2    Thielen, J.3    Arritt, R.4    Hamill, T.5    Luo, L.6    Martin, E.7    Mccollor, D.8    Pappenberger, F.9
  • 75
    • 84891791860 scopus 로고    scopus 로고
    • Ensemble copula coupling
    • Diploma thesis, Faculty of Mathematics and Informatics, Heidelberg Univ.
    • SCHEFZIK, R. (2011). Ensemble copula coupling. Diploma thesis, Faculty of Mathematics and Informatics, Heidelberg Univ.
    • (2011)
    • Schefzik, R.1
  • 76
    • 84891800962 scopus 로고    scopus 로고
    • Supplement to "Uncertainty quantification in complex simulation models using ensemble copula coupling
    • DOI:10.1214/13-STS443SUPP
    • SCHEFZIK, R., THORARINSDOTTIR, T. L. and GNEITING, T. (2013). Supplement to "Uncertainty quantification in complex simulation models using ensemble copula coupling." DOI:10.1214/13-STS443SUPP.
    • (2013)
    • Schefzik, R.1    Thorarinsdottir, T.L.2    Gneiting, T.3
  • 77
    • 84899478006 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation forecasting using ensemble model output statistics
    • Quarterly Journal of the Royal Meteorological Society. To appear. DOI:10.1002/qj.2183.
    • SCHEUERER, M. (2013). Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quarterly Journal of the Royal Meteorological Society. To appear. DOI:10.1002/qj.2183.
    • (2013)
    • Scheuerer, M.1
  • 78
    • 78650192426 scopus 로고    scopus 로고
    • A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts
    • SCHMEITS, M. J. and KOK, K. J. (2010). A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Monthly Weather Review 138 4199-4211.
    • (2010) Monthly Weather Review , vol.138 , pp. 4199-4211
    • Schmeits, M.J.1    Kok, K.J.2
  • 79
    • 54949105089 scopus 로고    scopus 로고
    • Multivariate nonnormally distributed random variables in climate research- Introduction to the copula approach
    • SCHOELZEL, C. and FRIEDERICHS, P. (2008). Multivariate nonnormally distributed random variables in climate research- Introduction to the copula approach. Nonlinear Processes in Geophysics 15 761-772.
    • (2008) Nonlinear Processes in Geophysics , vol.15 , pp. 761-772
    • Schoelzel, C.1    Friederichs, P.2
  • 80
    • 79954570091 scopus 로고    scopus 로고
    • Probabilistic assessment of regional climate change in Southwest Germany by ensemble dressing
    • SCHOELZEL, C. and HENSE, A. (2011). Probabilistic assessment of regional climate change in Southwest Germany by ensemble dressing. Climate Dynamics 36 2003-2014.
    • (2011) Climate Dynamics , vol.36 , pp. 2003-2014
    • Schoelzel, C.1    Hense, A.2
  • 82
    • 84862143203 scopus 로고    scopus 로고
    • Asymptotics of empirical copula processes under non-restrictive smoothness assumptions
    • MR2948900
    • SEGERS, J. (2012). Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 764- 782. MR2948900
    • (2012) Bernoulli , vol.18
    • Segers, J.1
  • 83
    • 0000795592 scopus 로고
    • Fonctions de répartition à n dimensions et leurs marges
    • MR0125600
    • SKLAR, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229-231. MR0125600
    • (1959) Publ. Inst. Statist. Univ. Paris , vol.8 , pp. 229-231
    • Sklar, M.1
  • 84
    • 77952562085 scopus 로고    scopus 로고
    • Probabilistic wind spread forecasting using ensembles and Bayesian model averaging
    • MR2757189
    • SLOUGHTER, M., GNEITING, T. and RAFTERY, A. E. (2010). Probabilistic wind spread forecasting using ensembles and Bayesian model averaging. J. Amer. Statist. Assoc. 105 25-35. MR2757189
    • (2010) J. Amer. Statist. Assoc. , vol.105 , pp. 25-35
    • Sloughter, M.1    Gneiting, T.2    Raftery, A.E.3
  • 85
    • 84880176182 scopus 로고    scopus 로고
    • Probabilistic wind vector forecasting using ensembles and Bayesian model averaging
    • SLOUGHTER, J. M., GNEITING, T. and RAFTERY, A. E. (2013). Probabilistic wind vector forecasting using ensembles and Bayesian model averaging. Monthly Weather Review 141 2107- 2119.
    • (2013) Monthly Weather Review , vol.141
    • Sloughter, J.M.1    Gneiting, T.2    Raftery, A.E.3
  • 86
    • 34248354794 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation forecasting using Bayesian model averaging
    • SLOUGHTER, J. M., RAFTERY, A. E., GNEITING, T. and FRALEY, C. (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Monthly Weather Review 135 3209-3220.
    • (2007) Monthly Weather Review , vol.135 , pp. 3209-3220
    • Sloughter, J.M.1    Raftery, A.E.2    Gneiting, T.3    Fraley, C.4
  • 87
    • 0003693218 scopus 로고    scopus 로고
    • Interpolation of Spatial Data: Some Theory for Kriging
    • Springer, New York.
    • STEIN, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.
    • (1999)
    • Stein, M.L.1
  • 88
    • 77950945178 scopus 로고    scopus 로고
    • Probabilistic forecasts of wind speed: Ensemble model ouput statistics by using heteroscedastic censored regression
    • MR2751882
    • THORARINSDOTTIR, T. L. and GNEITING, T. (2010). Probabilistic forecasts of wind speed: Ensemble model ouput statistics by using heteroscedastic censored regression. J. Roy. Statist. Soc. Ser. A 173 371-388. MR2751882
    • (2010) J. Roy. Statist. Soc. Ser. , vol.A173 , pp. 371-388
    • Thorarinsdottir, T.L.1    Gneiting, T.2
  • 89
    • 84863418569 scopus 로고    scopus 로고
    • Probabilistic wind gust forecasting using non-homogeneous Gaussian regression
    • THORARINSDOTTIR, T. L. and JOHNSON, M. S. (2012). Probabilistic wind gust forecasting using non-homogeneous Gaussian regression. Monthly Weather Review 140 889-897.
    • (2012) Monthly Weather Review , vol.140 , pp. 889-897
    • Thorarinsdottir, T.L.1    Johnson, M.S.2
  • 90
    • 84891811961 scopus 로고    scopus 로고
    • From the President: Discrete or continuous?
    • TREFETHEN, N. (2012). From the President: Discrete or continuous?. SIAM News 45 4.
    • (2012) SIAM News , vol.45 , pp. 4
    • Trefethen, N.1
  • 91
    • 0003679019 scopus 로고    scopus 로고
    • Weak Convergence and Empirical Processes: With Applications to Statistics
    • Springer, New York. MR1385671
    • VAN DER VAART, A.W. andWELLNER, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York. MR1385671
    • (1996)
    • Van Der Vaart, A.W.1    Wellner, J.A.2
  • 92
    • 80052415373 scopus 로고    scopus 로고
    • Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River basin
    • VOISIN, N., PAPPENBERGER, F., LETTENMAIER, D. P., BUIZZA, R. and SCHAAKE, J. C. (2011). Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River basin. Weather and Forecasting 26 425-446.
    • (2011) Weather and Forecasting , vol.26 , pp. 425-446
    • Voisin, N.1    Pappenberger, F.2    Lettenmaier, D.P.3    Buizza, R.4    Schaake, J.C.5
  • 93
    • 0036821009 scopus 로고    scopus 로고
    • Smoothing forecast ensembles with fitted probability distributions
    • WILKS, D. S. (2002). Smoothing forecast ensembles with fitted probability distributions. Quarterly Journal of the Royal Meteorological Society 128 2821-2836.
    • (2002) Quarterly Journal of the Royal Meteorological Society , vol.128 , pp. 2821-2836
    • Wilks, D.S.1
  • 94
    • 70349414695 scopus 로고    scopus 로고
    • Extending logistic regression to provide fullprobability- distribution MOS forecasts
    • WILKS, D. S. (2009). Extending logistic regression to provide fullprobability- distribution MOS forecasts. Meteorological Applications 16 361-368.
    • (2009) Meteorological Applications , vol.16 , pp. 361-368
    • Wilks, D.S.1
  • 95
    • 34447309549 scopus 로고    scopus 로고
    • Comparison of ensemble-MOS methods using GFS reforecasts
    • WILKS, D. S. and HAMILL, T. M. (2007). Comparison of ensemble-MOS methods using GFS reforecasts. Monthly Weather Review 135 2379-2390.
    • (2007) Monthly Weather Review , vol.135 , pp. 2379-2390
    • Wilks, D.S.1    Hamill, T.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.