-
1
-
-
33646342149
-
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
-
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh C-S, Reis e Sousa C, Matsuura Y, Fujita T, Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105. https://doi.org/10.1038/nature04734.
-
(2006)
Nature
, vol.441
, pp. 101-105
-
-
Kato, H.1
Takeuchi, O.2
Sato, S.3
Yoneyama, M.4
Yamamoto, M.5
Matsui, K.6
Uematsu, S.7
Jung, A.8
Kawai, T.9
Ishii, K.J.10
Yamaguchi, O.11
Otsu, K.12
Tsujimura, T.13
Koh, C.-S.14
Reise Sousa, C.15
Matsuura, Y.16
Fujita, T.17
Akira, S.18
-
2
-
-
84967215091
-
Viral evasion of intracellular DNA and RNA sensing
-
Chan YK, Gack MU. 2016. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol 14:360-373. https://doi.org/10.1038/nrmicro.2016.45.
-
(2016)
Nat Rev Microbiol
, vol.14
, pp. 360-373
-
-
Chan, Y.K.1
Gack, M.U.2
-
3
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5=-phosphates
-
Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5=-phosphates. Science 314:997-1001. https://doi.org/10.1126/science.1132998.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
Schulz, O.2
Tan, C.P.3
Naslund, T.I.4
Liljestrom, P.5
Weber, F.6
Reise Sousa, C.7
-
4
-
-
65549164536
-
Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
-
Gack MU, Albrecht RA, Urano T, Inn K-S, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, García-Sastre A. 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5:439-449. https://doi.org/10.1016/j.chom.2009.04.006.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 439-449
-
-
Gack, M.U.1
Albrecht, R.A.2
Urano, T.3
Inn, K.-S.4
Huang, I.C.5
Carnero, E.6
Farzan, M.7
Inoue, S.8
Jung, J.U.9
García-Sastre, A.10
-
5
-
-
81555204380
-
Structural basis of RNA recognition and activation by innate immune receptor RIG-I
-
Jiang F, Ramanathan A, Miller MT, Tang G-Q, Gale M, Patel SS, Marcotrigiano J. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423-427. https://doi.org/10.1038/nature10537.
-
(2011)
Nature
, vol.479
, pp. 423-427
-
-
Jiang, F.1
Ramanathan, A.2
Miller, M.T.3
Tang, G.-Q.4
Gale, M.5
Patel, S.S.6
Marcotrigiano, J.7
-
6
-
-
84896987305
-
Interferon-stimulated genes: a complex web of host defenses
-
Schneider WM, Chevillotte MD, Rice CM. 2014. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513-545. https://doi.org/10.1146/annurev-immunol-032713-120231.
-
(2014)
Annu Rev Immunol
, vol.32
, pp. 513-545
-
-
Schneider, W.M.1
Chevillotte, M.D.2
Rice, C.M.3
-
7
-
-
32944464648
-
Pathogen recognition and innate immunity
-
Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124:783-801. https://doi.org/10.1016/j.cell.2006.02.015.
-
(2006)
Cell
, vol.124
, pp. 783-801
-
-
Akira, S.1
Uematsu, S.2
Takeuchi, O.3
-
8
-
-
56749133272
-
Viral evasion and subversion of patternrecognition receptor signalling
-
Bowie AG, Unterholzner L. 2008. Viral evasion and subversion of patternrecognition receptor signalling. Nat Rev Immunol 8:911-922. https://doi.org/10.1038/nri2436.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 911-922
-
-
Bowie, A.G.1
Unterholzner, L.2
-
9
-
-
0036715591
-
Viruses and interferon: a fight for supremacy
-
Katze MG, He Y, Gale M, Jr. 2002. Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2:675-687. https://doi.org/10.1038/nri888.
-
(2002)
Nat Rev Immunol
, vol.2
, pp. 675-687
-
-
Katze, M.G.1
He, Y.2
Gale, M.3
-
10
-
-
0346787886
-
SARS virus: the beginning of the unraveling of a new coronavirus
-
Lai MM. 2003. SARS virus: the beginning of the unraveling of a new coronavirus. J Biomed Sci 10:664-675. https://doi.org/10.1007/BF02256318.
-
(2003)
J Biomed Sci
, vol.10
, pp. 664-675
-
-
Lai, M.M.1
-
11
-
-
58149398620
-
Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice
-
Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, Pickles RJ, Corti D, Johnston RE, Baric RS, Denison MR. 2008. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci U S A 105:19944-19949. https://doi.org/10.1073/pnas.0808116105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 19944-19949
-
-
Becker, M.M.1
Graham, R.L.2
Donaldson, E.F.3
Rockx, B.4
Sims, A.C.5
Sheahan, T.6
Pickles, R.J.7
Corti, D.8
Johnston, R.E.9
Baric, R.S.10
Denison, M.R.11
-
12
-
-
34147113199
-
Structure of the SARS coronavirus nucleocapsid protein RNAbinding dimerization domain suggests a mechanism for helical packaging of viral RNA
-
Chen CY, Chang CK, Chang YW, Sue SC, Bai HI, Riang L, Hsiao CD, Huang TH. 2007. Structure of the SARS coronavirus nucleocapsid protein RNAbinding dimerization domain suggests a mechanism for helical packaging of viral RNA. J Mol Biol 368:1075-1086. https://doi.org/10.1016/j.jmb.2007.02.069.
-
(2007)
J Mol Biol
, vol.368
, pp. 1075-1086
-
-
Chen, C.Y.1
Chang, C.K.2
Chang, Y.W.3
Sue, S.C.4
Bai, H.I.5
Riang, L.6
Hsiao, C.D.7
Huang, T.H.8
-
13
-
-
2442652875
-
Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein
-
Huang Q, Yu L, Petros AM, Gunasekera A, Liu Z, Xu N, Hajduk P, Mack J, Fesik SW, Olejniczak ET. 2004. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 43: 6059-6063. https://doi.org/10.1021/bi036155b.
-
(2004)
Biochemistry
, vol.43
, pp. 6059-6063
-
-
Huang, Q.1
Yu, L.2
Petros, A.M.3
Gunasekera, A.4
Liu, Z.5
Xu, N.6
Hajduk, P.7
Mack, J.8
Fesik, S.W.9
Olejniczak, E.T.10
-
14
-
-
1942451864
-
The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain
-
Surjit M, Liu B, Kumar P, Chow VT, Lal SK. 2004. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochem Biophys Res Commun 317:1030-1036. https://doi.org/10.1016/j.bbrc.2004.03.154.
-
(2004)
Biochem Biophys Res Commun
, vol.317
, pp. 1030-1036
-
-
Surjit, M.1
Liu, B.2
Kumar, P.3
Chow, V.T.4
Lal, S.K.5
-
15
-
-
4544337001
-
Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus
-
He R, Leeson A, Ballantine M, Andonov A, Baker L, Dobie F, Li Y, Bastien N, Feldmann H, Strocher U, Theriault S, Cutts T, Cao J, Booth TF, Plummer FA, Tyler S, Li X. 2004. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res 105:121-125. https://doi.org/10.1016/j.virusres.2004.05.002.
-
(2004)
Virus Res
, vol.105
, pp. 121-125
-
-
He, R.1
Leeson, A.2
Ballantine, M.3
Andonov, A.4
Baker, L.5
Dobie, F.6
Li, Y.7
Bastien, N.8
Feldmann, H.9
Strocher, U.10
Theriault, S.11
Cutts, T.12
Cao, J.13
Booth, T.F.14
Plummer, F.A.15
Tyler, S.16
Li, X.17
-
16
-
-
52049125442
-
Dissection and identification of regions required to form pseudoparticles by the interaction between the nucleocapsid (N) and membrane (M) proteins of SARS coronavirus
-
Hatakeyama S, Matsuoka Y, Ueshiba H, Komatsu N, Itoh K, Shichijo S, Kanai T, Fukushi M, Ishida I, Kirikae T, Sasazuki T, Miyoshi-Akiyama T. 2008 Dissection and identification of regions required to form pseudoparticles by the interaction between the nucleocapsid (N) and membrane (M) proteins of SARS coronavirus. Virology 380:99-108. https://doi.org/10.1016/j.virol.2008.07.012.
-
(2008)
Virology
, vol.380
, pp. 99-108
-
-
Hatakeyama, S.1
Matsuoka, Y.2
Ueshiba, H.3
Komatsu, N.4
Itoh, K.5
Shichijo, S.6
Kanai, T.7
Fukushi, M.8
Ishida, I.9
Kirikae, T.10
Sasazuki, T.11
Miyoshi-Akiyama, T.12
-
17
-
-
33646168070
-
Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein
-
Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y, Wu J. 2006. Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 38:1417-1428. https://doi.org/10.1016/j.biocel.2006.02.003.
-
(2006)
Int J Biochem Cell Biol
, vol.38
, pp. 1417-1428
-
-
Yan, X.1
Hao, Q.2
Mu, Y.3
Timani, K.A.4
Ye, L.5
Zhu, Y.6
Wu, J.7
-
18
-
-
77952196908
-
Interactions of SARS coronavirus nucleocapsid protein with the host cell proteasome subunit p42
-
Wang Q, Li C, Zhang Q, Wang T, Li J, Guan W, Yu J, Liang M, Li D. 2010. Interactions of SARS coronavirus nucleocapsid protein with the host cell proteasome subunit p42. Virol J 7:99. https://doi.org/10.1186/1743-422X-7-99.
-
(2010)
Virol J
, vol.7
, pp. 99
-
-
Wang, Q.1
Li, C.2
Zhang, Q.3
Wang, T.4
Li, J.5
Guan, W.6
Yu, J.7
Liang, M.8
Li, D.9
-
19
-
-
40649098253
-
SARS coronavirus and innate immunity
-
Frieman M, Heise M, Baric R. 2008. SARS coronavirus and innate immunity. Virus Res 133:101-112. https://doi.org/10.1016/j.virusres.2007.03.015.
-
(2008)
Virus Res
, vol.133
, pp. 101-112
-
-
Frieman, M.1
Heise, M.2
Baric, R.3
-
20
-
-
60049100937
-
Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging
-
Chang CK, Hsu YL, Chang YH, Chao FA, Wu MC, Huang YS, Hu CK, Huang TH. 2009. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol 83: 2255-2264. https://doi.org/10.1128/JVI.02001-08.
-
(2009)
J Virol
, vol.83
, pp. 2255-2264
-
-
Chang, C.K.1
Hsu, Y.L.2
Chang, Y.H.3
Chao, F.A.4
Wu, M.C.5
Huang, Y.S.6
Hu, C.K.7
Huang, T.H.8
-
21
-
-
33846104528
-
Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists
-
Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81:548-557. https://doi.org/10.1128/JVI.01782-06.
-
(2007)
J Virol
, vol.81
, pp. 548-557
-
-
Kopecky-Bromberg, S.A.1
Martinez-Sobrido, L.2
Frieman, M.3
Baric, R.A.4
Palese, P.5
-
22
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916-920. https://doi.org/10.1038/nature05732.
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
Shin, Y.C.2
Joo, C.H.3
Urano, T.4
Liang, C.5
Sun, L.6
Takeuchi, O.7
Akira, S.8
Chen, Z.9
Inoue, S.10
Jung, J.U.11
-
23
-
-
0038660668
-
Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA
-
Servant MJ, Grandvaux N, ten Oever BR, Duguay D, Lin R, Hiscott J. 2003. Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 278:9441-9447. https://doi.org/10.1074/jbc.M209851200.
-
(2003)
J Biol Chem
, vol.278
, pp. 9441-9447
-
-
Servant, M.J.1
Grandvaux, N.2
ten Oever, B.R.3
Duguay, D.4
Lin, R.5
Hiscott, J.6
-
24
-
-
70450222299
-
A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo
-
Day CW, Baric R, Cai SX, Frieman M, Kumaki Y, Morrey JD, Smee DF, Barnard DL. 2009. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology 395:210-222. https://doi.org/10.1016/j.virol.2009.09.023.
-
(2009)
Virology
, vol.395
, pp. 210-222
-
-
Day, C.W.1
Baric, R.2
Cai, S.X.3
Frieman, M.4
Kumaki, Y.5
Morrey, J.D.6
Smee, D.F.7
Barnard, D.L.8
-
25
-
-
46349085629
-
Interferon alfacon 1 inhibits SARS-CoV infection in human bronchial epithelial Calu-3 cells
-
Kumaki Y, Day CW, Wandersee MK, Schow BP, Madsen JS, Grant D, Roth JP, Smee DF, Blatt LM, Barnard DL. 2008. Interferon alfacon 1 inhibits SARS-CoV infection in human bronchial epithelial Calu-3 cells. Biochem Biophys Res Commun 371:110-113. https://doi.org/10.1016/j.bbrc.2008.04.006.
-
(2008)
Biochem Biophys Res Commun
, vol.371
, pp. 110-113
-
-
Kumaki, Y.1
Day, C.W.2
Wandersee, M.K.3
Schow, B.P.4
Madsen, J.S.5
Grant, D.6
Roth, J.P.7
Smee, D.F.8
Blatt, L.M.9
Barnard, D.L.10
-
26
-
-
84876310574
-
Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus
-
Zielecki F, Weber M, Eickmann M, Spiegelberg L, Zaki AM, Matrosovich M, Becker S, Weber F. 2013. Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J Virol 87: 5300-5304. https://doi.org/10.1128/JVI.03496-12.
-
(2013)
J Virol
, vol.87
, pp. 5300-5304
-
-
Zielecki, F.1
Weber, M.2
Eickmann, M.3
Spiegelberg, L.4
Zaki, A.M.5
Matrosovich, M.6
Becker, S.7
Weber, F.8
-
27
-
-
33749367362
-
Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: self-association analysis and nucleic acid binding characterization
-
Luo H, Chen J, Chen K, Shen X, Jiang H. 2006. Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: self-association analysis and nucleic acid binding characterization. Biochemistry 45:11827-11835. https://doi.org/10.1021/bi0609319.
-
(2006)
Biochemistry
, vol.45
, pp. 11827-11835
-
-
Luo, H.1
Chen, J.2
Chen, K.3
Shen, X.4
Jiang, H.5
-
28
-
-
85016626167
-
Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control
-
Durai P, Batool M, Shah M, Choi S. 2015. Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control. Exp Mol Med 47:e181. https://doi.org/10.1038/emm.2015.76.
-
(2015)
Exp Mol Med
, vol.47
-
-
Durai, P.1
Batool, M.2
Shah, M.3
Choi, S.4
-
29
-
-
0037561920
-
Characterization of a novel coronavirus associated with severe acute respiratory syndrome
-
Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394-1399. https://doi.org/10.1126/science.1085952.
-
(2003)
Science
, vol.300
, pp. 1394-1399
-
-
Rota, P.A.1
Oberste, M.S.2
Monroe, S.S.3
Nix, W.A.4
Campagnoli, R.5
Icenogle, J.P.6
Penaranda, S.7
Bankamp, B.8
Maher, K.9
Chen, M.H.10
Tong, S.11
Tamin, A.12
Lowe, L.13
Frace, M.14
DeRisi, J.L.15
Chen, Q.16
Wang, D.17
Erdman, D.D.18
Peret, T.C.19
Burns, C.20
Ksiazek, T.G.21
Rollin, P.E.22
Sanchez, A.23
Liffick, S.24
Holloway, B.25
Limor, J.26
McCaustland, K.27
Olsen-Rasmussen, M.28
Fouchier, R.29
Gunther, S.30
Osterhaus, A.D.31
Drosten, C.32
Pallansch, M.A.33
Anderson, L.J.34
Bellini, W.J.35
more..
-
30
-
-
84869035188
-
SARS-like virus in the Middle East: a truly bat-related coronavirus causing human diseases
-
Lu G, Liu D. 2012. SARS-like virus in the Middle East: a truly bat-related coronavirus causing human diseases. Protein Cell 3:803-805. https://doi.org/10.1007/s13238-012-2811-1.
-
(2012)
Protein Cell
, vol.3
, pp. 803-805
-
-
Lu, G.1
Liu, D.2
-
31
-
-
84955404811
-
Bat origin of human coronaviruses
-
Hu B, Ge X, Wang LF, Shi Z. 2015. Bat origin of human coronaviruses. Virol J 12:221. https://doi.org/10.1186/s12985-015-0422-1.
-
(2015)
Virol J
, vol.12
, pp. 221
-
-
Hu, B.1
Ge, X.2
Wang, L.F.3
Shi, Z.4
-
32
-
-
84907226057
-
One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities
-
Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, Decroly E, Snijder EJ, Canard B, Imbert I. 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc Natl Acad Sci U S A 111: E3900-E3909. https://doi.org/10.1073/pnas.1323705111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E3900-E3909
-
-
Subissi, L.1
Posthuma, C.C.2
Collet, A.3
Zevenhoven-Dobbe, J.C.4
Gorbalenya, A.E.5
Decroly, E.6
Snijder, E.J.7
Canard, B.8
Imbert, I.9
-
33
-
-
84923169092
-
Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology
-
Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. 2015 Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 89:2995-3007. https://doi.org/10.1128/JVI.02980-14.
-
(2015)
J Virol
, vol.89
, pp. 2995-3007
-
-
Honda-Okubo, Y.1
Barnard, D.2
Ong, C.H.3
Peng, B.H.4
Tseng, C.T.5
Petrovsky, N.6
-
34
-
-
19944419885
-
Expression profile of immune response genes in patients with severe acute respiratory syndrome
-
Reghunathan R, Jayapal M, Hsu LY, Chng HH, Tai D, Leung BP, Melendez AJ. 2005. Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol 6:2. https://doi.org/10.1186/1471-2172-6-2.
-
(2005)
BMC Immunol
, vol.6
, pp. 2
-
-
Reghunathan, R.1
Jayapal, M.2
Hsu, L.Y.3
Chng, H.H.4
Tai, D.5
Leung, B.P.6
Melendez, A.J.7
-
35
-
-
84878523342
-
Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures
-
Chan RW, Chan MC, Agnihothram S, Chan LL, Kuok DI, Fong JH, Guan Y, Poon LL, Baric RS, Nicholls JM, Peiris JS. 2013. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol 87:6604-6614. https://doi.org/10.1128/JVI.00009-13.
-
(2013)
J Virol
, vol.87
, pp. 6604-6614
-
-
Chan, R.W.1
Chan, M.C.2
Agnihothram, S.3
Chan, L.L.4
Kuok, D.I.5
Fong, J.H.6
Guan, Y.7
Poon, L.L.8
Baric, R.S.9
Nicholls, J.M.10
Peiris, J.S.11
-
36
-
-
84888011629
-
A decade after SARS: strategies for controlling emerging coronaviruses
-
Graham RL, Donaldson EF, Baric RS. 2013. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 11:836-848. https://doi.org/10.1038/nrmicro3143.
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 836-848
-
-
Graham, R.L.1
Donaldson, E.F.2
Baric, R.S.3
-
37
-
-
84876945545
-
Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling
-
Jauregui AR, Savalia D, Lowry VK, Farrell CM, Wathelet MG. 2013. Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling. PLoS One 8:e62416. https://doi.org/10.1371/journal.pone.0062416.
-
(2013)
PLoS One
, vol.8
-
-
Jauregui, A.R.1
Savalia, D.2
Lowry, V.K.3
Farrell, C.M.4
Wathelet, M.G.5
-
38
-
-
84895534920
-
Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response
-
Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C, Lui PY, Chan CP, Tse H, Woo PC, Yuen KY, Jin DY. 2014. Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol 88:4866-4876. https://doi.org/10.1128/JVI.03649-13.
-
(2014)
J Virol
, vol.88
, pp. 4866-4876
-
-
Siu, K.L.1
Yeung, M.L.2
Kok, K.H.3
Yuen, K.S.4
Kew, C.5
Lui, P.Y.6
Chan, C.P.7
Tse, H.8
Woo, P.C.9
Yuen, K.Y.10
Jin, D.Y.11
-
39
-
-
84886298565
-
Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist
-
Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, Barchet W, Weber F, Drosten C, Muller MA. 2013. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol 87:12489-12495. https://doi.org/10.1128/JVI.01845-13.
-
(2013)
J Virol
, vol.87
, pp. 12489-12495
-
-
Niemeyer, D.1
Zillinger, T.2
Muth, D.3
Zielecki, F.4
Horvath, G.5
Suliman, T.6
Barchet, W.7
Weber, F.8
Drosten, C.9
Muller, M.A.10
-
40
-
-
84890049888
-
The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists
-
Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, Zhao Z, Tan W. 2013. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4:951-961. https://doi.org/10.1007/s13238-013-3096-8.
-
(2013)
Protein Cell
, vol.4
, pp. 951-961
-
-
Yang, Y.1
Zhang, L.2
Geng, H.3
Deng, Y.4
Huang, B.5
Guo, Y.6
Zhao, Z.7
Tan, W.8
-
41
-
-
33947387099
-
Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist
-
Ye Y, Hauns K, Langland JO, Jacobs BL, Hogue BG. 2007. Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J Virol 81:2554-2563. https://doi.org/10.1128/JVI.01634-06.
-
(2007)
J Virol
, vol.81
, pp. 2554-2563
-
-
Ye, Y.1
Hauns, K.2
Langland, J.O.3
Jacobs, B.L.4
Hogue, B.G.5
-
42
-
-
77953855867
-
TRIM proteins: another class of viral victims
-
Munir M. 2010. TRIM proteins: another class of viral victims. Sci Signal 3:jc2.
-
(2010)
Sci Signal
, vol.3
-
-
Munir, M.1
-
43
-
-
27244444559
-
TRIM family proteins: retroviral restriction and antiviral defence
-
Nisole S, Stoye JP, Saib A. 2005. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3:799-808. https://doi.org/10.1038/nrmicro1248.
-
(2005)
Nat Rev Microbiol
, vol.3
, pp. 799-808
-
-
Nisole, S.1
Stoye, J.P.2
Saib, A.3
-
44
-
-
54949126675
-
TRIM family proteins and their emerging roles in innate immunity
-
Ozato K, Shin DM, Chang TH, Morse HC, III. 2008. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8:849-860. https://doi.org/10.1038/nri2413.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 849-860
-
-
Ozato, K.1
Shin, D.M.2
Chang, T.H.3
Morse I.I.I, H.C.4
-
45
-
-
84861330800
-
MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors
-
Castanier C, Zemirli N, Portier A, Garcin D, Bidere N, Vazquez A, Arnoult D. 2012. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 10:44. https://doi.org/10.1186/1741-7007-10-44.
-
(2012)
BMC Biol
, vol.10
, pp. 44
-
-
Castanier, C.1
Zemirli, N.2
Portier, A.3
Garcin, D.4
Bidere, N.5
Vazquez, A.6
Arnoult, D.7
-
46
-
-
84949936285
-
Regulation of MDA5-MAVS antiviral signaling axis by TRIM25 through TRAF6-mediated NF-kappaB activation
-
Lee NR, Kim HI, Choi MS, Yi CM, Inn KS. 2015. Regulation of MDA5-MAVS antiviral signaling axis by TRIM25 through TRAF6-mediated NF-kappaB activation. Mol Cell 38:759-764. https://doi.org/10.14348/molcells.2015.0047.
-
(2015)
Mol Cell
, vol.38
, pp. 759-764
-
-
Lee, N.R.1
Kim, H.I.2
Choi, M.S.3
Yi, C.M.4
Inn, K.S.5
-
47
-
-
84943577112
-
Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness
-
Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, Tan HC, Sessions OM, Ward AM, Gubler DJ, Harris E, Garcia-Blanco MA, Ooi EE. 2015 Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350:217-221. https://doi.org/10.1126/science.aab3369.
-
(2015)
Science
, vol.350
, pp. 217-221
-
-
Manokaran, G.1
Finol, E.2
Wang, C.3
Gunaratne, J.4
Bahl, J.5
Ong, E.Z.6
Tan, H.C.7
Sessions, O.M.8
Ward, A.M.9
Gubler, D.J.10
Harris, E.11
Garcia-Blanco, M.A.12
Ooi, E.E.13
-
48
-
-
84862895252
-
SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon
-
Totura AL, Baric RS. 2012. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol 2:264-275. https://doi.org/10.1016/j.coviro.2012.04.004.
-
(2012)
Curr Opin Virol
, vol.2
, pp. 264-275
-
-
Totura, A.L.1
Baric, R.S.2
-
49
-
-
79960315021
-
SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism
-
Lu X, Pan J, Tao J, Guo D. 2011. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42:37-45. https://doi.org/10.1007/s11262-010-0544-x.
-
(2011)
Virus Genes
, vol.42
, pp. 37-45
-
-
Lu, X.1
Pan, J.2
Tao, J.3
Guo, D.4
-
50
-
-
85012027074
-
Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoVinfected mice
-
Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S. 2016. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoVinfected mice. Cell Host Microbe 19:181-193. https://doi.org/10.1016/j.chom.2016.01.007.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 181-193
-
-
Channappanavar, R.1
Fehr, A.R.2
Vijay, R.3
Mack, M.4
Zhao, J.5
Meyerholz, D.K.6
Perlman, S.7
-
51
-
-
2342645538
-
Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques
-
Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, van Amerongen G, van Riel D, de Jong T, Itamura S, Chan KH, Tashiro M, Osterhaus AD. 2004. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10:290-293. https://doi.org/10.1038/nm1001.
-
(2004)
Nat Med
, vol.10
, pp. 290-293
-
-
Haagmans, B.L.1
Kuiken, T.2
Martina, B.E.3
Fouchier, R.A.4
Rimmelzwaan, G.F.5
van Amerongen, G.6
van Riel, D.7
de Jong, T.8
Itamura, S.9
Chan, K.H.10
Tashiro, M.11
Osterhaus, A.D.12
-
52
-
-
84955391557
-
Treatment with lopinavir/ritonavir or interferon-beta1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset
-
Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L, Li F, Xiao C, Gao H, Yu P, Cai JP, Chu H, Zhou J, Chen H, Qin C, Yuen KY. 2015. Treatment with lopinavir/ritonavir or interferon-beta1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 212:1904-1913. https://doi.org/10.1093/infdis/jiv392.
-
(2015)
J Infect Dis
, vol.212
, pp. 1904-1913
-
-
Chan, J.F.1
Yao, Y.2
Yeung, M.L.3
Deng, W.4
Bao, L.5
Jia, L.6
Li, F.7
Xiao, C.8
Gao, H.9
Yu, P.10
Cai, J.P.11
Chu, H.12
Zhou, J.13
Chen, H.14
Qin, C.15
Yuen, K.Y.16
-
53
-
-
0348136783
-
Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study
-
Loutfy MR, Blatt LM, Siminovitch KA, Ward S, Wolff B, Lho H, Pham DH, Deif H, LaMere EA, Chang M, Kain KC, Farcas GA, Ferguson P, Latchford M, Levy G, Dennis JW, Lai EK, Fish EN. 2003. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA 290:3222-3228. https://doi.org/10.1001/jama.290.24.3222.
-
(2003)
JAMA
, vol.290
, pp. 3222-3228
-
-
Loutfy, M.R.1
Blatt, L.M.2
Siminovitch, K.A.3
Ward, S.4
Wolff, B.5
Lho, H.6
Pham, D.H.7
Deif, H.8
LaMere, E.A.9
Chang, M.10
Kain, K.C.11
Farcas, G.A.12
Ferguson, P.13
Latchford, M.14
Levy, G.15
Dennis, J.W.16
Lai, E.K.17
Fish, E.N.18
-
54
-
-
0042354620
-
Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China
-
Zhao Z, Zhang F, Xu M, Huang K, Zhong W, Cai W, Yin Z, Huang S, Deng Z, Wei M, Xiong J, Hawkey PM. 2003. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol 52:715-720. https://doi.org/10.1099/jmm.0.05320-0.
-
(2003)
J Med Microbiol
, vol.52
, pp. 715-720
-
-
Zhao, Z.1
Zhang, F.2
Xu, M.3
Huang, K.4
Zhong, W.5
Cai, W.6
Yin, Z.7
Huang, S.8
Deng, Z.9
Wei, M.10
Xiong, J.11
Hawkey, P.M.12
-
55
-
-
84896695450
-
Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study
-
Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. 2014. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis 20:42-46. https://doi.org/10.1016/j.ijid.2013.12.003.
-
(2014)
Int J Infect Dis
, vol.20
, pp. 42-46
-
-
Al-Tawfiq, J.A.1
Momattin, H.2
Dib, J.3
Memish, Z.A.4
-
56
-
-
0030999553
-
Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry
-
Bitzer M, Lauer U, Baumann C, Spiegel M, Gregor M, Neubert WJ. 1997. Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry. J Virol 71:5481-5486.
-
(1997)
J Virol
, vol.71
, pp. 5481-5486
-
-
Bitzer, M.1
Lauer, U.2
Baumann, C.3
Spiegel, M.4
Gregor, M.5
Neubert, W.J.6
-
57
-
-
0037223757
-
Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins
-
Park MS, Shaw ML, Munoz-Jordan J, Cros JF, Nakaya T, Bouvier N, Palese P, Garcia-Sastre A, Basler CF. 2003. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 77:1501-1511. https://doi.org/10.1128/JVI.77.2.1501-1511.2003.
-
(2003)
J Virol
, vol.77
, pp. 1501-1511
-
-
Park, M.S.1
Shaw, M.L.2
Munoz-Jordan, J.3
Cros, J.F.4
Nakaya, T.5
Bouvier, N.6
Palese, P.7
Garcia-Sastre, A.8
Basler, C.F.9
-
58
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method
-
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262.
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
59
-
-
0042905738
-
Catalase activity is regulated by c-Abl and Arg in the oxidative stress response
-
Cao C, Leng Y, Kufe D. 2003. Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J Biol Chem 278:29667-29675. https://doi.org/10.1074/jbc.M301292200.
-
(2003)
J Biol Chem
, vol.278
, pp. 29667-29675
-
-
Cao, C.1
Leng, Y.2
Kufe, D.3
-
60
-
-
38949084217
-
SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells
-
Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, Funk CJ, Manzer R, Miura TA, Pearson LD, Holmes KV, Mason RJ. 2008. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology 372:127-135. https://doi.org/10.1016/j.virol.2007.09.045.
-
(2008)
Virology
, vol.372
, pp. 127-135
-
-
Mossel, E.C.1
Wang, J.2
Jeffers, S.3
Edeen, K.E.4
Wang, S.5
Cosgrove, G.P.6
Funk, C.J.7
Manzer, R.8
Miura, T.A.9
Pearson, L.D.10
Holmes, K.V.11
Mason, R.J.12
-
61
-
-
3142751194
-
Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR
-
Gillim-Ross L, Taylor J, Scholl DR, Ridenour J, Masters PS, Wentworth DE. 2004 Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J Clin Microbiol 42:3196-3206. https://doi.org/10.1128/JCM.42.7.3196-3206.2004.
-
(2004)
J Clin Microbiol
, vol.42
, pp. 3196-3206
-
-
Gillim-Ross, L.1
Taylor, J.2
Scholl, D.R.3
Ridenour, J.4
Masters, P.S.5
Wentworth, D.E.6
|