메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 203-232

Build, compute, critique, repeat: Data analysis with latent variable models

Author keywords

Graphical models; Latent variable models; Posterior predictive checks; Predictive sample reuse; Variational inference

Indexed keywords


EID: 84906879757     PISSN: 23268298     EISSN: 2326831X     Source Type: Journal    
DOI: 10.1146/annurev-statistics-022513-115657     Document Type: Article
Times cited : (146)

References (118)
  • 2
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak CE. 1974. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 2:1152-74
    • (1974) Ann. Stat , vol.2 , pp. 1152-1174
    • Antoniak, C.E.1
  • 4
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • Attias H. 1999. Inferring parameters and structure of latent variable models by variational Bayes. Proc. Conf. Uncertain. Artif. Intell. 15:21-30
    • (1999) Proc. Conf. Uncertain. Artif. Intell , vol.15 , pp. 21-30
    • Attias, H.1
  • 5
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Attias H. 2000. A variational Bayesian framework for graphical models. Adv. Neural Inf. Process. Syst. 12:209-15
    • (2000) Adv. Neural Inf. Process. Syst , vol.12 , pp. 209-215
    • Attias, H.1
  • 9
    • 0029043932 scopus 로고
    • The analysis of repeated-measures data on schizophrenic reaction times using mixture models
    • Belin TR, Rubin DB. 1995. The analysis of repeated-measures data on schizophrenic reaction times using mixture models. Stat. Med. 14:747-68
    • (1995) Stat. Med , vol.14 , pp. 747-768
    • Belin, T.R.1    Rubin, D.B.2
  • 10
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the Netflix prize challenge
    • Bell RM, Koren Y. 2007. Lessons from the Netflix prize challenge. ACM SIGKDD Explor. Newsl. 9:75-79
    • (2007) ACM SIGKDD Explor. Newsl , vol.9 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 13
    • 84874128594 scopus 로고    scopus 로고
    • Model-based machine learning
    • Bishop CM. 2013. Model-based machine learning. Philos. Trans. R. Soc. A 371:20120222
    • (2013) Philos. Trans. R. Soc. A , vol.371 , pp. 20120222
    • Bishop, C.M.1
  • 15
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • Blei DM. 2012. Probabilistic topic models. Commun. ACM 55:77-84
    • (2012) Commun ACM , vol.55 , pp. 77-84
    • Blei, D.M.1
  • 17
    • 52449116403 scopus 로고    scopus 로고
    • A correlated topic model of science
    • Blei DM, Lafferty JD. 2007. A correlated topic model of science. Ann. Appl. Stat. 1:17-35
    • (2007) Ann. Appl. Stat , vol.1 , pp. 17-35
    • Blei, D.M.1    Lafferty, J.D.2
  • 19
    • 0000025871 scopus 로고
    • Science and statistics
    • Box GEP. 1976. Science and statistics. J. Am. Stat. Assoc. 71:791-99
    • (1976) J. Am. Stat. Assoc , vol.71 , pp. 791-799
    • Box, G.E.P.1
  • 20
    • 0001135785 scopus 로고
    • Sampling and Bayes' inference in scientific modelling and robustness
    • Box GEP. 1980. Sampling and Bayes' inference in scientific modelling and robustness. J. R. Stat. Soc. A 143:383-430
    • (1980) J. R. Stat. Soc. A , vol.143 , pp. 383-430
    • Box, G.E.P.1
  • 22
    • 0002928751 scopus 로고
    • Discrimination among mechanistic models
    • Box GEP, Hill WJ. 1967. Discrimination among mechanistic models. Technometrics 9:57-71
    • (1967) Technometrics , vol.9 , pp. 57-71
    • Box, G.E.P.1    Hill, W.J.2
  • 23
    • 3042895415 scopus 로고
    • A useful method for model-building
    • Box GEP, Hunter WG. 1962. A useful method for model-building. Technometrics 4:301-18
    • (1962) Technometrics , vol.4 , pp. 301-318
    • Box, G.E.P.1    Hunter, W.G.2
  • 24
    • 0011302720 scopus 로고
    • The experimental study of physical mechanisms
    • Box GEP, Hunter WG. 1965. The experimental study of physical mechanisms. Technometrics 7:23-42
    • (1965) Technometrics , vol.7 , pp. 23-42
    • Box, G.E.P.1    Hunter, W.G.2
  • 29
    • 84899014910 scopus 로고    scopus 로고
    • A generalization of principal component analysis to the exponential family
    • Collins M, Dasgupta S, Schapire R. 2002. A generalization of principal component analysis to the exponential family. Adv. Neural Inf. Process. Syst. 14:617-24
    • (2002) Adv. Neural Inf. Process. Syst , vol.14 , pp. 617-624
    • Collins, M.1    Dasgupta, S.2    Schapire, R.3
  • 31
    • 21344482755 scopus 로고
    • Hyper Markov laws in the statistical analysis of decomposable graphical models
    • Dawid AP, Lauritzen SL. 1993. Hyper Markov laws in the statistical analysis of decomposable graphical models. Ann. Stat. 21:1272-317
    • (1993) Ann. Stat , vol.21 , pp. 1272-1317
    • Dawid, A.P.1    Lauritzen, S.L.2
  • 32
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B. 36:1-38
    • (1977) J. R. Stat. Soc. B , vol.36 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 33
    • 0002006630 scopus 로고
    • Theories of data analysis: From magical thinking through classical statistics
    • New York Wiley, ed. DC Hoaglin, F Mosteller, JW Tukey
    • Diaconis P. 1985. Theories of data analysis: from magical thinking through classical statistics. In Exploring Data: Tables, Trends, and Shapes, ed. DC Hoaglin, F Mosteller, JW Tukey, pp. 1-36. New York: Wiley
    • (1985) Exploring Data: Tables, Trends, and Shapes , pp. 1-36
    • Diaconis, P.1
  • 35
    • 84906870368 scopus 로고    scopus 로고
    • Empirical Bayes modeling, computation, and accuracy
    • Div. Biostat., Stanford Univ., Stanford, CA
    • Efron B. 2013. Empirical Bayes modeling, computation, and accuracy. Tech. rep. 263, Div. Biostat., Stanford Univ., Stanford, CA. http://statweb.stanford. edu/~ckirby/brad/papers/2013EBModeling.pdf
    • (2013) Tech. Rep , vol.263
    • Efron, B.1
  • 36
    • 0000053186 scopus 로고
    • Combining possibly related estimation problems
    • Efron B, Morris C. 1973. Combining possibly related estimation problems. J. R. Stat. Soc. B 35:379-421
    • (1973) J. R. Stat. Soc. B , vol.35 , pp. 379-421
    • Efron, B.1    Morris, C.2
  • 37
    • 1842637512 scopus 로고    scopus 로고
    • Mixed-membership models of scientific publications
    • Erosheva E, Fienberg S, Lafferty J. 2004. Mixed-membership models of scientific publications. Proc. Natl. Acad. Sci. USA 101(Suppl. 1):5220-27
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.SUPPL.1 , pp. 5220-5227
    • Erosheva, E.1    Fienberg, S.2    Lafferty, J.3
  • 38
    • 52949126188 scopus 로고    scopus 로고
    • Describing disability through individual-level mixture models for multivariate binary data
    • Erosheva EA, Fienberg SE, Joutard C. 2007. Describing disability through individual-level mixture models for multivariate binary data. Ann. Appl. Stat. 1:502-37
    • (2007) Ann. Appl. Stat , vol.1 , pp. 502-537
    • Erosheva, E.A.1    Fienberg, S.E.2    Joutard, C.3
  • 39
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS. 1973. A Bayesian analysis of some nonparametric problems. Ann. Stat. 1:209-30
    • (1973) Ann. Stat , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 40
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • Geisser S. 1975. The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70:320-28
    • (1975) J. Am. Stat. Assoc , vol.70 , pp. 320-328
    • Geisser, S.1
  • 41
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand AE, Smith AFM. 1990. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85:398-409
    • (1990) J. Am. Stat. Assoc , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 44
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A, Meng X-L, Stern H. 1996. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6:733-807
    • (1996) Stat. Sin , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.-L.2    Stern, H.3
  • 45
    • 84872536689 scopus 로고    scopus 로고
    • Philosophy and the practice of Bayesian statistics
    • Gelman A, Shalizi CR. 2012. Philosophy and the practice of Bayesian statistics. Br. J. Math. Stat. Psychol. 66:8-38
    • (2012) Br. J. Math. Stat. Psychol , vol.66 , pp. 8-38
    • Gelman, A.1    Shalizi, C.R.2
  • 46
    • 15044358532 scopus 로고    scopus 로고
    • Multiple imputation for model checking: Completed-data plots with missing and latent data
    • Gelman A, Van Mechelen I, Verbeke G, Heitjan DF, Meulders M. 2005. Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics 61:74-85
    • (2005) Biometrics , vol.61 , pp. 74-85
    • Gelman, A.1    Van Mechelen, I.2    Verbeke, G.3    Heitjan, D.F.4    Meulders, M.5
  • 47
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6:721-41
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 48
    • 84857235576 scopus 로고    scopus 로고
    • A tutorial on Bayesian nonparametric models
    • Gershman SJ, Blei DM. 2012. A tutorial on Bayesian nonparametric models. J. Math. Psychol. 56:1-12
    • (2012) J. Math. Psychol , vol.56 , pp. 1-12
    • Gershman, S.J.1    Blei, D.M.2
  • 49
    • 84874126433 scopus 로고    scopus 로고
    • Bayesian nonparametrics and the probabilistic approach to modelling
    • Ghahramani Z. 2012. Bayesian nonparametrics and the probabilistic approach to modelling. Philos. Trans. R. Soc. A 371:1984
    • (2012) Philos. Trans. R. Soc. A , vol.371 , pp. 1984
    • Ghahramani, Z.1
  • 50
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • Ghahramani Z, Beal MJ. 2001. Propagation algorithms for variational Bayesian learning. Adv. Neural Inf. Process. Syst. 13:507-13
    • (2001) Adv. Neural Inf. Process. Syst , vol.13 , pp. 507-513
    • Ghahramani, Z.1    Beal, M.J.2
  • 51
    • 0001178202 scopus 로고
    • A language and program for complex Bayesian modelling
    • Gilks WR, Thomas A, Spiegelhalter DJ. 1992. A language and program for complex Bayesian modelling. Statistician 43:169-77
    • (1992) Statistician , vol.43 , pp. 169-177
    • Gilks, W.R.1    Thomas, A.2    Spiegelhalter, D.J.3
  • 52
    • 84926272958 scopus 로고
    • The philosophy of exploratory data analysis
    • Good IJ. 1983. The philosophy of exploratory data analysis. Philos. Sci. 50:283-95
    • (1983) Philos. Sci , vol.50 , pp. 283-295
    • Good, I.J.1
  • 54
    • 0002876195 scopus 로고
    • The use of the concept of a future observation in goodness-of-fit problems
    • Guttman I. 1967. The use of the concept of a future observation in goodness-of-fit problems. J. R. Stat. Soc. B 29:83-100
    • (1967) J. R. Stat. Soc. B , vol.29 , pp. 83-100
    • Guttman, I.1
  • 55
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 58
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24:417-41
    • (1933) J. Educ. Psychol , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 59
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling H. 1936. Relations between two sets of variates. Biometrika 28:321-77
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 60
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and Bayesian strategies
    • Ishwaran H, Rao JS. 2005. Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33:730-73
    • (2005) Ann. Stat , vol.33 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 62
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • Jordan MI. 2004. Graphical models. Stat. Sci. 19:140-55
    • (2004) Stat. Sci , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 64
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman RE. 1960. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82:35-45
    • (1960) Trans. ASME J. Basic Eng , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 66
    • 85162453650 scopus 로고    scopus 로고
    • Non-conjugate variational message passing for multinomial and binary regression
    • Knowles DA, Minka TP. 2011. Non-conjugate variational message passing for multinomial and binary regression. Adv. Neural Inf. Process. Syst. 24:1701-9
    • (2011) Adv. Neural Inf. Process. Syst , vol.24 , pp. 1701-1709
    • Knowles, D.A.1    Minka, T.P.2
  • 68
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren Y, Bell R, Volinsky C. 2009. Matrix factorization techniques for recommender systems. Computer 42:30-37
    • (2009) Computer , vol.42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 69
    • 35948952011 scopus 로고    scopus 로고
    • Parametric and nonparametric Bayesian model specification: A case study involving models for count data
    • Krnjajić M, Kottas A, Draper D. 2008. Parametric and nonparametric Bayesian model specification: a case study involving models for count data. Comput. Stat. Data Anal. 52:2110-28
    • (2008) Comput. Stat. Data Anal , vol.52 , pp. 2110-2128
    • Krnjajić, M.1    Kottas, A.2    Draper, D.3
  • 71
    • 84906856853 scopus 로고    scopus 로고
    • Discussion of some aspects of model selection for prediction: Article of Chakrabarti and Ghosh
    • ed. JM Bernardo, MJ Bayarri, JO Berger, AP David, D Heckerman, et al., Oxford, UK: Oxford Univ. Press
    • Lauritzen SL. 2007. Discussion of some aspects of model selection for prediction: article of Chakrabarti and Ghosh. In Bayesian Statistics 8, ed. JM Bernardo, MJ Bayarri, JO Berger, AP David, D Heckerman, et al., pp. 84-90. Oxford, UK: Oxford Univ. Press
    • (2007) Bayesian Statistics , vol.8 , pp. 84-90
    • Lauritzen, S.L.1
  • 72
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401:788-91
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 73
    • 84972487778 scopus 로고
    • Model specification: The views of Fisher and Neyman, and later developments
    • Lehmann EL. 1990. Model specification: the views of Fisher and Neyman, and later developments. Stat. Sci. 5(2):160-68
    • (1990) Stat. Sci , vol.5 , Issue.2 , pp. 160-168
    • Lehmann, E.L.1
  • 75
    • 4444311171 scopus 로고    scopus 로고
    • Multiple-sequence functional annotation and the generalized hidden Markov phylogeny
    • McAuliffe JD, Pachter L, Jordan MI. 2004. Multiple-sequence functional annotation and the generalized hidden Markov phylogeny. Bioinformatics 20:1850-60
    • (2004) Bioinformatics , vol.20 , pp. 1850-1860
    • McAuliffe, J.D.1    Pachter, L.2    Jordan, M.I.3
  • 76
    • 84863338363 scopus 로고    scopus 로고
    • FACTORIE: Probabilistic programming via imperatively defined factor graphs
    • McCallum A, Schultz K, Singh S. 2009. FACTORIE: probabilistic programming via imperatively defined factor graphs. Adv. Neural Inf. Process. Syst. 22:1249-57
    • (2009) Adv. Neural Inf. Process. Syst , vol.22 , pp. 1249-1257
    • McCallum, A.1    Schultz, K.2    Singh, S.3
  • 78
    • 0042742904 scopus 로고
    • Posterior predictive p-values
    • Meng X-L. 1994. Posterior predictive p-values. Ann. Stat. 22:1142-60
    • (1994) Ann. Stat , vol.22 , pp. 1142-1160
    • Meng, X.-L.1
  • 82
    • 84950432453 scopus 로고
    • Parametric empirical Bayes inference: Theory and applications
    • Morris CN. 1983. Parametric empirical Bayes inference: theory and applications. J. Am. Stat. Assoc. 78:47-65
    • (1983) J. Am. Stat. Assoc , vol.78 , pp. 47-65
    • Morris, C.N.1
  • 84
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • Cambridge, MA MIT Press, ed. MI Jordan
    • Neal RM, Hinton GE. 1999. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models, ed. MI Jordan, pp. 355-68. Cambridge, MA: MIT Press
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 87
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points
    • Pearson K. 1901. On lines and planes of closest fit to systems of points. Lond. Edinb. Dublin Philos. Mag. J. Sci. 6:559-72
    • (1901) Lond. Edinb. Dublin Philos. Mag. J. Sci , vol.6 , pp. 559-572
    • Pearson, K.1
  • 88
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • Peterson C, Anderson JR. 1987. A mean field theory learning algorithm for neural networks. Complex Syst. 1:995-1019
    • (1987) Complex Syst , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 90
    • 0034118493 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data
    • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-59
    • (2000) Genetics , vol.155 , pp. 945-959
    • Pritchard, J.K.1    Stephens, M.2    Donnelly, P.3
  • 91
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner LR. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77:257-86
    • (1989) Proc IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 92
    • 0347124352 scopus 로고
    • An empirical Bayes estimation problem
    • Robbins H. 1980. An empirical Bayes estimation problem. Proc. Natl. Acad. Sci. USA 77:6988-89
    • (1980) Proc. Natl. Acad. Sci. USA , vol.77 , pp. 6988-6989
    • Robbins, H.1
  • 93
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins H, Monro S. 1951. A stochastic approximation method. Ann. Math. Stat. 22:400-7
    • (1951) Ann. Math. Stat , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 95
  • 96
    • 0000439370 scopus 로고
    • Bayesianly justifiable and relevant frequency calculations for the applied statistician
    • Rubin DB. 1984. Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Stat. 12:1151-72
    • (1984) Ann. Stat , vol.12 , pp. 1151-1172
    • Rubin, D.B.1
  • 97
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71:319-92
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 99
    • 85156241149 scopus 로고    scopus 로고
    • Exploiting tractable substructures in intractable networks
    • Saul LK, Jordan MI. 1996. Exploiting tractable substructures in intractable networks. Adv. Neural Inf. Process. Syst. 8:486-92
    • (1996) Adv. Neural Inf. Process. Syst , vol.8 , pp. 486-492
    • Saul, L.K.1    Jordan, M.I.2
  • 100
    • 1542537849 scopus 로고    scopus 로고
    • Combining phylogenetic and hidden Markov models in biosequence analysis
    • Siepel A, Haussler D. 2004. Combining phylogenetic and hidden Markov models in biosequence analysis. J. Comput. Biol. 11:413-28
    • (2004) J. Comput. Biol , vol.11 , pp. 413-428
    • Siepel, A.1    Haussler, D.2
  • 101
    • 36749051765 scopus 로고    scopus 로고
    • Latent variable modelling: A survey
    • Skrondal A, Rabe-Hesketh S. 2007. Latent variable modelling: a survey. Scand. J. Stat. 34:712-45
    • (2007) Scand. J. Stat , vol.34 , pp. 712-745
    • Skrondal, A.1    Rabe-Hesketh, S.2
  • 104
    • 33745909504 scopus 로고    scopus 로고
    • Probabilistic topic models
    • London: Laurence Erlbaum, ed. T Landauer, D McNamara, S Dennis, W Kintsch
    • Steyvers M, Griffiths T. 2006. Probabilistic topic models. In Latent Semantic Analysis: A Road to Meaning, ed. T Landauer, D McNamara, S Dennis, W Kintsch, pp. 424-40. London: Laurence Erlbaum
    • (2006) Latent Semantic Analysis: A Road to Meaning , pp. 424-440
    • Steyvers, M.1    Griffiths, T.2
  • 105
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. 1974. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B 36:111-47
    • (1974) J. R. Stat. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 106
    • 77954201482 scopus 로고    scopus 로고
    • Hierarchical Bayesian nonparametric models with applications
    • ed. NL Hjort, C Holmes, P Müller, SG Walker, New York: Cambridge Univ. Press
    • Teh YW, Jordan MI. 2008. Hierarchical Bayesian nonparametric models with applications. In Bayesian Non-parametrics, ed. NL Hjort, C Holmes, P Müller, SG Walker, pp. 158-207. New York: Cambridge Univ. Press
    • (2008) Bayesian Non-parametrics , pp. 158-207
    • Teh, Y.W.1    Jordan, M.I.2
  • 107
    • 84979109755 scopus 로고
    • The factorial analysis of human ability
    • Thomson G. 1939. The factorial analysis of human ability. Br. J. Educ. Psychol. 9:188-95
    • (1939) Br. J. Educ. Psychol , vol.9 , pp. 188-195
    • Thomson, G.1
  • 108
    • 0000296415 scopus 로고
    • Multiple factor analysis
    • Thurstone LL. 1931. Multiple factor analysis. Psychol. Rev. 38:406-27
    • (1931) Psychol. Rev , vol.38 , pp. 406-427
    • Thurstone, L.L.1
  • 110
    • 0001560641 scopus 로고
    • Fully exponential Laplace approximations to expectations and variances of nonpositive functions
    • Tierney L, Kass RE, Kadane JB. 1989. Fully exponential Laplace approximations to expectations and variances of nonpositive functions. J. Am. Stat. Assoc. 84:710-16
    • (1989) J. Am. Stat. Assoc , vol.84 , pp. 710-716
    • Tierney, L.1    Kass, R.E.2    Kadane, J.B.3
  • 111
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping ME, Bishop CM. 1999. Probabilistic principal component analysis. J. R. Stat. Soc. B 61:611-22
    • (1999) J. R. Stat. Soc. B , vol.61 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 112
    • 0002331280 scopus 로고
    • The future of data analysis
    • Tukey JW. 1962. The future of data analysis. Ann. Math. Stat. 33:1-67
    • (1962) Ann. Math. Stat , vol.33 , pp. 1-67
    • Tukey, J.W.1
  • 113
    • 14544284975 scopus 로고    scopus 로고
    • Highly structured models for spectral analysis in high-energy astrophysics
    • van Dyk DA, Kang H. 2004. Highly structured models for spectral analysis in high-energy astrophysics. Stat. Sci. 19:275-93
    • (2004) Stat. Sci , vol.19 , pp. 275-293
    • Van Dyk, D.A.1    Kang, H.2
  • 114
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Wainwright MJ, Jordan MI. 2008. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1:1-305
    • (2008) Found. Trends Mach. Learn , vol.1 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 115
    • 84877630966 scopus 로고    scopus 로고
    • Variational inference in nonconjugate models
    • Wang C, Blei DM. 2013. Variational inference in nonconjugate models. J. Mach. Learn. Res. 14:1005-1031
    • (2013) J. Mach. Learn. Res , vol.14 , pp. 1005-1031
    • Wang, C.1    Blei, D.M.2
  • 117
    • 0012131861 scopus 로고    scopus 로고
    • Variational approximations between mean field theory and the junction tree algorithm
    • Wiegerinck W. 2000. Variational approximations between mean field theory and the junction tree algorithm. Proc. Conf. Uncertain. Artif. Intell. 16:626-33
    • (2000) Proc. Conf. Uncertain. Artif. Intell , vol.16 , pp. 626-633
    • Wiegerinck, W.1
  • 118
    • 3242679207 scopus 로고    scopus 로고
    • A generalized mean field algorithm for variational inference in exponential families
    • Xing EP, Jordan MI, Russell S. 2003. A generalized mean field algorithm for variational inference in exponential families. Proc. Conf. Uncertain. Artif. Intell. 19:583-91
    • (2003) Proc. Conf. Uncertain. Artif. Intell , vol.19 , pp. 583-591
    • Xing, E.P.1    Jordan, M.I.2    Russell, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.