-
3
-
-
84886567160
-
-
University of California, Irvine, School of Information and Computer Sciences
-
Kevin Bache and Moshe Lichman. UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, 2013. URL http://archive.ics.uci.edu/ml.
-
(2013)
UCI Machine Learning Repository
-
-
Bache, K.1
Lichman, M.2
-
5
-
-
0001561263
-
Bayesian back-propagation
-
Wray L Buntine and Andreas S Weigend. Bayesian back-propagation. Complex systems, 5(6):603-643, 1991.
-
(1991)
Complex Systems
, vol.5
, Issue.6
, pp. 603-643
-
-
Buntine, W.L.1
Weigend, A.S.2
-
7
-
-
0030532505
-
Bayesian variable selection with related predictors
-
Hugh Chipman. Bayesian variable selection with related predictors. Canadian Journal of Statistics, 24(1): 17-36, 1996.
-
(1996)
Canadian Journal of Statistics
, vol.24
, Issue.1
, pp. 17-36
-
-
Chipman, H.1
-
8
-
-
84877760312
-
Large scale distributed deep networks
-
Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in Neural Information Processing Systems (NIPS), pages 1223-1231, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Senior, A.7
Tucker, P.8
Yang, K.9
Le, Q.V.10
-
9
-
-
85162071043
-
Parametric bandits: The generalized linear case
-
Sarah Filippi, Olivier Cappe, Aurlien Garivier, and Csaba Szepesvri. Parametric bandits: The generalized linear case. In Advances in Neural Information Processing Systems, pages 586-594, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 586-594
-
-
Filippi, S.1
Cappe, O.2
Garivier, A.3
Szepesvri, C.4
-
10
-
-
33751115761
-
Variational free energy and the Laplace approximation
-
Karl Friston, Jérémie Mattout, Nelson Trujillo-Barreto, John Ashburner, and Will Penny. Variational free energy and the Laplace approximation. Neuroimage, 34 (1):220-234, 2007.
-
(2007)
Neuroimage
, vol.34
, Issue.1
, pp. 220-234
-
-
Friston, K.1
Mattout, J.2
Trujillo-Barreto, N.3
Ashburner, J.4
Penny, W.5
-
11
-
-
84867133460
-
Objections to Bayesian statistics
-
Andrew Gelman. Objections to Bayesian statistics. Bayesian Analysis, 3:445-450, 2008, ISSN 1931-6690. doi: 11.1214/08-BA318.
-
(2008)
Bayesian Analysis
, vol.3
, pp. 445-450
-
-
Gelman, A.1
-
13
-
-
84862294866
-
Deep sparse rectifier networks
-
Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics Learning (AISTATS), volume 15, pages 315-323, 2011.
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics Learning (AISTATS)
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
15
-
-
84919796355
-
Deep autoregressive networks
-
Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blun-dell, and Daan Wierstra. Deep AutoRegressive networks. In Proceedings of the 31st International Conference on Machine Learning (ICML), pages 1242-1250, 2014.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (ICML)
, pp. 1242-1250
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blun-Dell, C.4
Wierstra, D.5
-
19
-
-
84867720412
-
-
arXiv:1207.0580, July
-
Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, July 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
20
-
-
0042685161
-
Bayesian parameter estimation via variational methods
-
Tommi S. Jaakkola and Michael I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25-37, 2000.
-
(2000)
Statistics and Computing
, vol.10
, Issue.1
, pp. 25-37
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
23
-
-
0000134812
-
Une procédure d'apprentissage pour réseau à seuil asymmetrique (a learning scheme for asymmetric threshold networks)
-
Paris, France
-
Yann LeCun. Une procédure d'apprentissage pour réseau à seuil asymmetrique (a learning scheme for asymmetric threshold networks). In Proceedings of Cognitiva 85, Paris, France, pages 599-604, 1985.
-
(1985)
Proceedings of Cognitiva
, vol.85
, pp. 599-604
-
-
LeCun, Y.1
-
25
-
-
77954641643
-
A contextual-bandit approach to personalized news article recommendation
-
New York, NY, USA, ACM
-
Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th International Conference on World Wide Web, WWW '10, pages 661-670, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.1772758.
-
(2010)
Proceedings of the 19th International Conference on World Wide Web, WWW '10
, pp. 661-670
-
-
Li, L.1
Chu, W.2
Langford, J.3
Schapire, R.E.4
-
26
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural computation, 4(3): 448-472, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
27
-
-
0001441372
-
Probable networks and plausible predictions-A review of practical Bayesian methods for supervised neural networks
-
David JC MacKay. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469-505, 1995.
-
(1995)
Network: Computation in Neural Systems
, vol.6
, Issue.3
, pp. 469-505
-
-
MacKay, D.J.C.1
-
28
-
-
84864939787
-
Optimistic Bayesian sampling in contextual-bandit problems
-
Benedict C May, Nathan Korda, Anthony Lee, and David S. Leslie. Optimistic Bayesian sampling in contextual-bandit problems. The Journal of Machine Learning Research, 13(1):2069-2106, 2012.
-
(2012)
The Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 2069-2106
-
-
May, B.C.1
Korda, N.2
Lee, A.3
Leslie, D.S.4
-
33
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
Springer
-
Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, pages 355-368. Springer, 1998.
-
(1998)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
34
-
-
63249135864
-
The variational Gaussian approximation revisited
-
Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. Neural computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
38
-
-
0029679189
-
Mean field theory for sigmoid belief networks
-
Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief networks. Journal of artificial intelligence research, 4(1):61-76, 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, Issue.1
, pp. 61-76
-
-
Saul, L.K.1
Jaakkola, T.2
Jordan, M.I.3
-
39
-
-
84945900998
-
Best practices for convolutional neural networks applied to visual document analysis
-
IEEE Computer Society
-
Patrice Y Simard, Dave Steinkraus, and John C Piatt. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR), volume 2, pages 958-958. IEEE Computer Society, 2003.
-
(2003)
Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR)
, vol.2
, pp. 958
-
-
Simard, P.Y.1
Steinkraus, D.2
Piatt, J.C.3
-
40
-
-
0001395850
-
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
-
William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, pages 285-294, 1933.
-
(1933)
Biometrika
, pp. 285-294
-
-
Thompson, W.R.1
-
42
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural networks using dropconnect. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1058-1066, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
43
-
-
0000388721
-
Generalized belief propagation
-
Jonathan S Yedidia, William T Freeman, and Yair Weiss. Generalized belief propagation. In Advances in Neural Information Processing Systems (NIPS), volume 13, pages 689-695, 2000.
-
(2000)
Advances in Neural Information Processing Systems (NIPS)
, vol.13
, pp. 689-695
-
-
Yedidia, J.S.1
Freeman, W.T.2
Weiss, Y.3
|