-
4
-
-
65749319923
-
Transformations des signaux aléatoires a travers les systèmes non linéaires sans mémoire
-
Georges Bonnet. Transformations des signaux aléatoires a travers les systèmes non linéaires sans mémoire. Annals of Telecommunications, 19(9):203-220, 1964.
-
(1964)
Annals of Telecommunications
, vol.19
, Issue.9
, pp. 203-220
-
-
Bonnet, G.1
-
5
-
-
84890527827
-
Improving deep neural networks for lvcsr using rectified linear units and dropout
-
George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural networks for lvcsr using rectified linear units and dropout. In ICASSP, 2013.
-
(2013)
ICASSP
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
-
6
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
7
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11:625-660, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.4
Vincent, P.5
Bengio, S.6
-
8
-
-
0000789717
-
Location and scale parameters in exponential families of distributions
-
Thomas S Ferguson. Location and scale parameters in exponential families of distributions. Annals of Mathematical Statistics, pages 986-1001, 1962.
-
(1962)
Annals of Mathematical Statistics
, pp. 986-1001
-
-
Ferguson, T.S.1
-
9
-
-
84965123118
-
Deep temporal sigmoid belief networks for sequence modeling
-
Zhe Gan, Chunyuan Li, Ricardo Henao, David Carlson, and Lawrence Carin. Deep temporal sigmoid belief networks for sequence modeling. In NIPS, 2015.
-
(2015)
NIPS
-
-
Gan, Z.1
Li, C.2
Henao, R.3
Carlson, D.4
Carin, L.5
-
11
-
-
84877726166
-
Fast variational inference in the conjugate exponential family
-
James Hensman, Magnus Rattray, and Neil D Lawrence. Fast variational inference in the conjugate exponential family. In NIPS, 2012.
-
(2012)
NIPS
-
-
Hensman, J.1
Rattray, M.2
Lawrence, N.D.3
-
12
-
-
0029652445
-
The "wake-sleep" algorithm for unsupervised neural networks
-
Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The "wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214):1158-1161, 1995.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
14
-
-
84878919168
-
Stochastic variational inference
-
Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
15
-
-
84937864160
-
Decoupled variational Gaussian inference
-
Mohammad E Khan. Decoupled variational gaussian inference. In NIPS, 2014.
-
(2014)
NIPS
-
-
Khan, M.E.1
-
16
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning with deep generative models. In NIPS, 2014.
-
(2014)
NIPS
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
17
-
-
85083952489
-
Auto-encoding variational bayes
-
Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
18
-
-
77956541496
-
Deep learning via hessian-free optimization
-
James Martens. Deep learning via hessian-free optimization. In ICML, 2010.
-
(2010)
ICML
-
-
Martens, J.1
-
19
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
20
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
21
-
-
80053437034
-
On optimization methods for deep learning
-
Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and Andrew Y Ng. On optimization methods for deep learning. In ICML, 2011.
-
(2011)
ICML
-
-
Ngiam, J.1
Coates, A.2
Lahiri, A.3
Prochnow, B.4
Le, Q.V.5
Ng, A.Y.6
-
23
-
-
0000255539
-
Fast exact multiplication by the hessian
-
Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.1
, pp. 147-160
-
-
Pearlmutter, B.A.1
-
24
-
-
84937352287
-
A useful theorem for nonlinear devices having Gaussian inputs
-
Robert Price. A useful theorem for nonlinear devices having gaussian inputs. Information Theory, IRE Transactions on, 4(2):69-72, 1958.
-
(1958)
Information Theory, IRE Transactions on
, vol.4
, Issue.2
, pp. 69-72
-
-
Price, R.1
-
25
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
26
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
Tim Salimans. Markov chain monte carlo and variational inference: Bridging the gap. In ICML, 2015.
-
(2015)
ICML
-
-
Salimans, T.1
-
27
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.V.3
-
28
-
-
84919786928
-
Doubly stochastic variational bayes for non-conjugate inference
-
Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-conjugate inference. In ICML, 2014.
-
(2014)
ICML
-
-
Titsias, M.1
Lázaro-Gredilla, M.2
|