메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1387-1395

Fast second-order stochastic backpropagation for variational inference

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; GRADIENT METHODS; INFORMATION SCIENCE;

EID: 84965120997     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (50)

References (28)
  • 4
    • 65749319923 scopus 로고
    • Transformations des signaux aléatoires a travers les systèmes non linéaires sans mémoire
    • Georges Bonnet. Transformations des signaux aléatoires a travers les systèmes non linéaires sans mémoire. Annals of Telecommunications, 19(9):203-220, 1964.
    • (1964) Annals of Telecommunications , vol.19 , Issue.9 , pp. 203-220
    • Bonnet, G.1
  • 5
    • 84890527827 scopus 로고    scopus 로고
    • Improving deep neural networks for lvcsr using rectified linear units and dropout
    • George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural networks for lvcsr using rectified linear units and dropout. In ICASSP, 2013.
    • (2013) ICASSP
    • Dahl, G.E.1    Sainath, T.N.2    Hinton, G.E.3
  • 6
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 8
    • 0000789717 scopus 로고
    • Location and scale parameters in exponential families of distributions
    • Thomas S Ferguson. Location and scale parameters in exponential families of distributions. Annals of Mathematical Statistics, pages 986-1001, 1962.
    • (1962) Annals of Mathematical Statistics , pp. 986-1001
    • Ferguson, T.S.1
  • 9
    • 84965123118 scopus 로고    scopus 로고
    • Deep temporal sigmoid belief networks for sequence modeling
    • Zhe Gan, Chunyuan Li, Ricardo Henao, David Carlson, and Lawrence Carin. Deep temporal sigmoid belief networks for sequence modeling. In NIPS, 2015.
    • (2015) NIPS
    • Gan, Z.1    Li, C.2    Henao, R.3    Carlson, D.4    Carin, L.5
  • 10
    • 84983208884 scopus 로고    scopus 로고
    • Draw: A recurrent neural network for image generation
    • Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A recurrent neural network for image generation. In ICML, 2015.
    • (2015) ICML
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Wierstra, D.4
  • 11
    • 84877726166 scopus 로고    scopus 로고
    • Fast variational inference in the conjugate exponential family
    • James Hensman, Magnus Rattray, and Neil D Lawrence. Fast variational inference in the conjugate exponential family. In NIPS, 2012.
    • (2012) NIPS
    • Hensman, J.1    Rattray, M.2    Lawrence, N.D.3
  • 12
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The "wake-sleep" algorithm for unsupervised neural networks. Science, 268(5214):1158-1161, 1995.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 84937864160 scopus 로고    scopus 로고
    • Decoupled variational Gaussian inference
    • Mohammad E Khan. Decoupled variational gaussian inference. In NIPS, 2014.
    • (2014) NIPS
    • Khan, M.E.1
  • 16
    • 84930643107 scopus 로고    scopus 로고
    • Semi-supervised learning with deep generative models
    • Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning with deep generative models. In NIPS, 2014.
    • (2014) NIPS
    • Kingma, D.P.1    Mohamed, S.2    Rezende, D.J.3    Welling, M.4
  • 17
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 18
    • 77956541496 scopus 로고    scopus 로고
    • Deep learning via hessian-free optimization
    • James Martens. Deep learning via hessian-free optimization. In ICML, 2010.
    • (2010) ICML
    • Martens, J.1
  • 19
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 23
    • 0000255539 scopus 로고
    • Fast exact multiplication by the hessian
    • Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160, 1994.
    • (1994) Neural Computation , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.A.1
  • 24
    • 84937352287 scopus 로고
    • A useful theorem for nonlinear devices having Gaussian inputs
    • Robert Price. A useful theorem for nonlinear devices having gaussian inputs. Information Theory, IRE Transactions on, 4(2):69-72, 1958.
    • (1958) Information Theory, IRE Transactions on , vol.4 , Issue.2 , pp. 69-72
    • Price, R.1
  • 25
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 26
    • 84969835291 scopus 로고    scopus 로고
    • Markov chain monte carlo and variational inference: Bridging the gap
    • Tim Salimans. Markov chain monte carlo and variational inference: Bridging the gap. In ICML, 2015.
    • (2015) ICML
    • Salimans, T.1
  • 27
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.V.3
  • 28
    • 84919786928 scopus 로고    scopus 로고
    • Doubly stochastic variational bayes for non-conjugate inference
    • Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-conjugate inference. In ICML, 2014.
    • (2014) ICML
    • Titsias, M.1    Lázaro-Gredilla, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.