-
4
-
-
84898985963
-
Approximating posterior distributions in belief networks using mixtures
-
C. M. Bishop, N. Lawrence, T. Jaakkola, and M. I. Jordan. Approximating Posterior Distributions in Belief Networks Using Mixtures. In Advances in Neural Information Processing Systems, NIPS 10, 1998.
-
(1998)
Advances in Neural Information Processing Systems, NIPS
, vol.10
-
-
Bishop, C.M.1
Lawrence, N.2
Jaakkola, T.3
Jordan, M.I.4
-
9
-
-
34547540908
-
A new class of skewed multivariate distributions with applications to regression analysis
-
J. T. A. S. Ferreira and M. F. J. Steel. A New Class of Skewed Multivariate Distributions with Applications To Regression Analysis. Statistica Sinica, 17:505-529, 2007.
-
(2007)
Statistica Sinica
, vol.17
, pp. 505-529
-
-
Ferreira, J.T.A.S.1
Steel, M.F.J.2
-
11
-
-
0038132749
-
A variational method for learning sparse and overcomplete representations
-
M. Girolami. A Variational Method for Learning Sparse and Overcomplete Representations. Neural Computation, 13:2517-2532, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 2517-2532
-
-
Girolami, M.1
-
14
-
-
33749044832
-
A variational approach to bayesian logistic regression problems and their extensions
-
T. Jaakkola and M. Jordan. A Variational Approach to Bayesian Logistic Regression Problems and their Extensions. In Artificial Intelligence and Statistics, AISTATS 6, 1996.
-
(1996)
Artificial Intelligence and Statistics, AISTATS
, vol.6
-
-
Jaakkola, T.1
Jordan, M.2
-
15
-
-
85162389868
-
Variational bounds for mixed-data factor analysis
-
M. E. Khan, B. Marlin, G. Bouchard, and K. Murphy. Variational Bounds for Mixed-Data Factor Analysis. In Advances in Neural Information Processing Systems, NIPS 23, 2010.
-
(2010)
Advances in Neural Information Processing Systems, NIPS
, vol.23
-
-
Khan, M.E.1
Marlin, B.2
Bouchard, G.3
Murphy, K.4
-
17
-
-
51949083432
-
-
PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany
-
M. Kuss. Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2006.
-
(2006)
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning
-
-
Kuss, M.1
-
19
-
-
10044244001
-
-
Birkhauser, Boston, progress, Chapter 1 online at academic2.american.edu/ ~jpnolan
-
J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston, 2012. In progress, Chapter 1 online at academic2.american. edu/~jpnolan.
-
(2012)
Stable Distributions - Models for Heavy Tailed Data
-
-
Nolan, J.P.1
-
20
-
-
63249135864
-
The variational gaussian approximation revisited
-
M. Opper and C. Archambeau. The Variational Gaussian Approximation Revisited. Neural Computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
22
-
-
34347388573
-
Variational em algorithms for non-gaussian latent variable models
-
A. Palmer, D.Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM Algorithms for Non-Gaussian Latent Variable Models. In Advances in Neural Information Processing Systems, NIPS 20, 2006.
-
(2006)
Advances in Neural Information Processing Systems, NIPS
, vol.20
-
-
Palmer, A.1
Wipf, D.2
Kreutz-Delgado, K.3
Rao, B.4
-
25
-
-
0242595939
-
A new class of multivariate skew distributions with applications to bayesian regression models
-
S. K. Sahu, D. K. Dey, and M. D. Branco. A New Class of Multivariate Skew Distributions with Applications to Bayesian Regression Models. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 31(2):129-150, 2003.
-
(2003)
The Canadian Journal of Statistics / la Revue Canadienne de Statistique
, vol.31
, Issue.2
, pp. 129-150
-
-
Sahu, S.K.1
Dey, D.K.2
Branco, M.D.3
-
26
-
-
85014883141
-
Efficient and precise computation of convolutions: Applying FFT to heavy tailed distributions
-
P. Schaller and G. Temnov. Efficient and precise computation of convolutions: applying FFT to heavy tailed distributions. Computational Methods in Applied Mathematics, 8(2):187-200, 2008.
-
(2008)
Computational Methods in Applied Mathematics
, vol.8
, Issue.2
, pp. 187-200
-
-
Schaller, P.1
Temnov, G.2
-
27
-
-
0011716069
-
Markov chain Monte Carlo methods for stochastic volatility models
-
C. Siddhartha, F. Nardari, and N. Shephard. Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics, 108(2):281-316, 2002.
-
(2002)
Journal of Econometrics
, vol.108
, Issue.2
, pp. 281-316
-
-
Siddhartha, C.1
Nardari, F.2
Shephard, N.3
-
28
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
|