-
1
-
-
33846516584
-
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA
-
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
-
(2006)
Pattern Recognition and Machine Learning (Information Science and Statistics)
-
-
Bishop, C.M.1
-
2
-
-
65749319923
-
Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire
-
Bonnet, G. (1964). Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire. Annals of Telecommunications, 19(9):203-220.
-
(1964)
Annals of Telecommunications
, vol.19
, Issue.9
, pp. 203-220
-
-
Bonnet, G.1
-
3
-
-
85002478080
-
-
arXiv: 1506.09016
-
Bouchard, G., Trouillon, T., Perez, J., and Gaidon, A. (2015). Online learning to sample. arXiv:1506.09016.
-
(2015)
Online Learning to Sample
-
-
Bouchard, G.1
Trouillon, T.2
Perez, J.3
Gaidon, A.4
-
6
-
-
0002205556
-
Rao-Blackwellisation of sampling schemes
-
Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81-94.
-
(1996)
Biometrika
, vol.83
, Issue.1
, pp. 81-94
-
-
Casella, G.1
Robert, C.P.2
-
7
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
8
-
-
84969771345
-
-
arXiv: 1511.03095
-
Elvira, V., Martino, L., Luengo, D., and Bugallo, M. F. (2015). Generalized multiple importance sampling. arXiv:1511.03095.
-
(2015)
Generalized Multiple Importance Sampling
-
-
Elvira, V.1
Martino, L.2
Luengo, D.3
Bugallo, M.F.4
-
10
-
-
84976859194
-
Likelihood ratio gradient estimation for stochastic systems
-
Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75-84.
-
(1990)
Communications of the ACM
, vol.33
, Issue.10
, pp. 75-84
-
-
Glynn, P.W.1
-
11
-
-
85083953202
-
MuProp: Unbiased backpropagation for stochastic neural networks
-
Gu, S., Levine, S., Sutskever, I., and Mnih, A. (2016). MuProp: Unbiased backpropagation for stochastic neural networks. In International Conference on Learning Representations.
-
(2016)
International Conference on Learning Representations
-
-
Gu, S.1
Levine, S.2
Sutskever, I.3
Mnih, A.4
-
12
-
-
78649424388
-
Weighted average importance sampling and defensive mixture distributions
-
Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture distributions. Technometrics, 37(2):185-194.
-
(1995)
Technometrics
, vol.37
, Issue.2
, pp. 185-194
-
-
Hesterberg, T.1
-
13
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Hinton, G., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268(5214):1158-1161.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1161
-
-
Hinton, G.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
14
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
18
-
-
84965158671
-
Automatic variational inference in Stan
-
Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D. M. (2015). Automatic variational inference in Stan. In Advances in Neural Information Processing Systems.
-
(2015)
Advances in Neural Information Processing Systems
-
-
Kucukelbir, A.1
Ranganath, R.2
Gelman, A.3
Blei, D.M.4
-
21
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56(1):71-113.
-
(1992)
Artificial Intelligence
, vol.56
, Issue.1
, pp. 71-113
-
-
Neal, R.1
-
23
-
-
84904418787
-
Monte Carlo theory, methods and examples
-
Owen, A. B. (2013). Monte Carlo theory, methods and examples. Book in preparation.
-
(2013)
Book in Preparation
-
-
Owen, A.B.1
-
25
-
-
84937352287
-
A useful theorem for nonlinear devices having Gaussian inputs
-
Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4(2):69-72.
-
(1958)
IRE Transactions on Information Theory
, vol.4
, Issue.2
, pp. 69-72
-
-
Price, R.1
-
27
-
-
84995512444
-
Deep exponential families
-
Ranganath, R., Tang, L., Charlin, L., and Blei, D. M. (2015). Deep exponential families. In Artificial Intelligence and Statistics.
-
(2015)
Artificial Intelligence and Statistics
-
-
Ranganath, R.1
Tang, L.2
Charlin, L.3
Blei, D.M.4
-
31
-
-
84969807774
-
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA
-
Robert, C. P. and Casella, G. (2005). Monte Carlo Statistical Methods (Springer Texts in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
-
(2005)
Monte Carlo Statistical Methods (Springer Texts in Statistics)
-
-
Robert, C.P.1
Casella, G.2
-
33
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
Salimans, T. and Knowles, D. A. (2013). Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837-882.
-
(2013)
Bayesian Analysis
, vol.8
, Issue.4
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
37
-
-
85002089697
-
Black-box policy search with probabilistic programs
-
van de Meent, J.-W., Tolpin, D., Paige, B., and Wood, F. (2016). Black-box policy search with probabilistic programs. In Artificial Intelligence and Statistics.
-
(2016)
Artificial Intelligence and Statistics
-
-
Van De Meent, J.-W.1
Tolpin, D.2
Paige, B.3
Wood, F.4
-
38
-
-
0029191761
-
Optimally combining sampling techniques for Monte Carlo rendering
-
Veach, E. and Guibas, L. (1995). Optimally combining sampling techniques for Monte Carlo rendering. In ACM SIGGRAPH.
-
(1995)
ACM SIGGRAPH
-
-
Veach, E.1
Guibas, L.2
-
39
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
40
-
-
0000337576
-
Simple statistical gradientfollowing algorithms for connectionist reinforcement learning
-
Williams, R. J. (1992). Simple statistical gradientfollowing algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4):229-256.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
|