-
2
-
-
65749319923
-
Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire
-
Bonnet, G. (1964). Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire. Annals of Telecommunications, 19(9):203-220.
-
(1964)
Annals of Telecommunications
, vol.19
, Issue.9
, pp. 203-220
-
-
Bonnet, G.1
-
4
-
-
0002205556
-
Rao-blackwellisation of sampling schemes
-
Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81-94.
-
(1996)
Biometrika
, vol.83
, Issue.1
, pp. 81-94
-
-
Casella, G.1
Robert, C.P.2
-
5
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
6
-
-
84965120997
-
Fast second order stochastic backpropagation for variational inference
-
Fan, K., Wang, Z., Beck, J., Kwok, J., and Heller, K. A. (2015). Fast second order stochastic backpropagation for variational inference. In Advances in Neural Information Processing Systems.
-
(2015)
Advances in Neural Information Processing Systems
-
-
Fan, K.1
Wang, Z.2
Beck, J.3
Kwok, J.4
Heller, K.A.5
-
8
-
-
84976859194
-
Likelihood ratio gradient estimation for stochastic systems
-
Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75-84.
-
(1990)
Communications of the ACM
, vol.33
, Issue.10
, pp. 75-84
-
-
Glynn, P.W.1
-
9
-
-
85083953202
-
MuProp: Unbiased backpropagation for stochastic neural networks
-
Gu, S., Levine, S., Sutskever, I., and Mnih, A. (2016). MuProp: Unbiased backpropagation for stochastic neural networks. In International Conference on Learning Representations.
-
(2016)
International Conference on Learning Representations
-
-
Gu, S.1
Levine, S.2
Sutskever, I.3
Mnih, A.4
-
10
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Hinton, G., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268(5214):1158-1161.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1161
-
-
Hinton, G.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
11
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
14
-
-
84965158671
-
Automatic variational inference in stan
-
Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D. M. (2015). Automatic variational inference in Stan. In Advances in Neural Information Processing Systems.
-
(2015)
Advances in Neural Information Processing Systems
-
-
Kucukelbir, A.1
Ranganath, R.2
Gelman, A.3
Blei, D.M.4
-
15
-
-
84997780122
-
-
arXiv:1603.00788
-
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2016). Automatic differentiation variational inference. arXiv:1603.00788.
-
(2016)
Automatic Differentiation Variational Inference
-
-
Kucukelbir, A.1
Tran, D.2
Ranganath, R.3
Gelman, A.4
Blei, D.M.5
-
16
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266):1332-1338.
-
(2015)
Science
, vol.350
, Issue.6266
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
18
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56(1):71-113.
-
(1992)
Artificial Intelligence
, vol.56
, Issue.1
, pp. 71-113
-
-
Neal, R.1
-
20
-
-
84937352287
-
A useful theorem for nonlinear devices having Gaussian inputs
-
Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4(2):69-72.
-
(1958)
IRE Transactions on Information Theory
, vol.4
, Issue.2
, pp. 69-72
-
-
Price, R.1
-
22
-
-
84995512444
-
Deep exponential families
-
Ranganath, R., Tang, L., Charlin, L., and Blei, D. M. (2015). Deep exponential families. In Artificial Intelligence and Statistics.
-
(2015)
Artificial Intelligence and Statistics
-
-
Ranganath, R.1
Tang, L.2
Charlin, L.3
Blei, D.M.4
-
26
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
Salimans, T. and Knowles, D. A. (2013). Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837-882.
-
(2013)
Bayesian Analysis
, vol.8
, Issue.4
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
27
-
-
84965157716
-
Gradient estimation using stochastic computation graphs
-
Schulman, J., Heess, N., Weber, T., and Abbeel, P. (2015). Gradient estimation using stochastic computation graphs. In Advances in Neural Information Processing Systems.
-
(2015)
Advances in Neural Information Processing Systems
-
-
Schulman, J.1
Heess, N.2
Weber, T.3
Abbeel, P.4
-
28
-
-
84893343292
-
Lecture 6.5-RMSPROP: Divide the gradient by a running average of its recent magnitude
-
Tieleman, T. and Hinton, G. (2012). Lecture 6.5-RMSPROP: Divide the gradient by a running average of its recent magnitude. Coursera: Neural Networks for Machine Learning, 4.
-
(2012)
Coursera: Neural Networks for Machine Learning
, vol.4
-
-
Tieleman, T.1
Hinton, G.2
-
31
-
-
85002089697
-
Black-box policy search with probabilistic programs
-
van de Meent, J.-W., Tolpin, D., Paige, B., and Wood, F. (2016). Black-box policy search with probabilistic programs. In Artificial Intelligence and Statistics.
-
(2016)
Artificial Intelligence and Statistics
-
-
Van De Meent, J.-W.1
Tolpin, D.2
Paige, B.3
Wood, F.4
-
32
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
33
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4):229-256.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
|