메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages 460-468

The generalized reparameterization gradient

Author keywords

[No Author keywords available]

Indexed keywords

LATENT VARIABLE; MONTE CARLO GRADIENTS; PROBABILISTIC MODELS; REPARAMETERIZATION; SCORE FUNCTION; SINGLE SAMPLE; VARIATIONAL INFERENCE; VARIATIONAL PARAMETERS;

EID: 85016392055     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (184)

References (34)
  • 2
    • 65749319923 scopus 로고
    • Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire
    • Bonnet, G. (1964). Transformations des signaux aléatoires a travers les systemes non linéaires sans mémoire. Annals of Telecommunications, 19(9):203-220.
    • (1964) Annals of Telecommunications , vol.19 , Issue.9 , pp. 203-220
    • Bonnet, G.1
  • 4
    • 0002205556 scopus 로고    scopus 로고
    • Rao-blackwellisation of sampling schemes
    • Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81-94.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 81-94
    • Casella, G.1    Robert, C.P.2
  • 5
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 8
    • 84976859194 scopus 로고
    • Likelihood ratio gradient estimation for stochastic systems
    • Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75-84.
    • (1990) Communications of the ACM , vol.33 , Issue.10 , pp. 75-84
    • Glynn, P.W.1
  • 10
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Hinton, G., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-sleep algorithm for unsupervised neural networks. Science, 268(5214):1158-1161.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 11
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 16
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266):1332-1338.
    • (2015) Science , vol.350 , Issue.6266 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 18
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56(1):71-113.
    • (1992) Artificial Intelligence , vol.56 , Issue.1 , pp. 71-113
    • Neal, R.1
  • 20
    • 84937352287 scopus 로고
    • A useful theorem for nonlinear devices having Gaussian inputs
    • Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4(2):69-72.
    • (1958) IRE Transactions on Information Theory , vol.4 , Issue.2 , pp. 69-72
    • Price, R.1
  • 26
    • 84891700107 scopus 로고    scopus 로고
    • Fixed-form variational posterior approximation through stochastic linear regression
    • Salimans, T. and Knowles, D. A. (2013). Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837-882.
    • (2013) Bayesian Analysis , vol.8 , Issue.4 , pp. 837-882
    • Salimans, T.1    Knowles, D.A.2
  • 28
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-RMSPROP: Divide the gradient by a running average of its recent magnitude
    • Tieleman, T. and Hinton, G. (2012). Lecture 6.5-RMSPROP: Divide the gradient by a running average of its recent magnitude. Coursera: Neural Networks for Machine Learning, 4.
    • (2012) Coursera: Neural Networks for Machine Learning , vol.4
    • Tieleman, T.1    Hinton, G.2
  • 32
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 33
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4):229-256.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.