메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3402-3410

Kullback-Leibler proximal variational inference

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; INFORMATION SCIENCE; STOCHASTIC SYSTEMS;

EID: 84965155990     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (47)

References (26)
  • 2
    • 84891700107 scopus 로고    scopus 로고
    • Fixed-form variational posterior approximation through stochastic linear regression
    • Tim Salimans, David A Knowles, et al. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837-882, 2013.
    • (2013) Bayesian Analysis , vol.8 , Issue.4 , pp. 837-882
    • Salimans, T.1    Knowles, D.A.2
  • 5
    • 0000147488 scopus 로고    scopus 로고
    • Online model selection based on the variational Bayes
    • Masa-Aki Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7):1649-1681, 2001.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1649-1681
    • Sato, M.-A.1
  • 7
    • 0034246689 scopus 로고    scopus 로고
    • Kullback proximal algorithms for maximum-likelihood estimation
    • Stéphane Chrétien and Alfred OIII Hero. Kullback proximal algorithms for maximum-likelihood estimation. Information Theory, IEEE Transactions on, 46(5):1800-1810, 2000.
    • (2000) Information Theory, IEEE Transactions on , vol.46 , Issue.5 , pp. 1800-1810
    • Chrétien, S.1    Hero, A.O.2
  • 8
    • 4043069783 scopus 로고    scopus 로고
    • An analysis of the EM algorithm and entropy-like proximal point methods
    • Paul Tseng. An analysis of the EM algorithm and entropy-like proximal point methods. Mathematics of Operations Research, 29(1):27-44, 2004.
    • (2004) Mathematics of Operations Research , vol.29 , Issue.1 , pp. 27-44
    • Tseng, P.1
  • 9
    • 0031285685 scopus 로고    scopus 로고
    • Convergence of proximal-like algorithms
    • M. Teboulle. Convergence of proximal-like algorithms. SIAM Jon Optimization, 7(4):1069-1083, 1997.
    • (1997) SIAM Jon Optimization , vol.7 , Issue.4 , pp. 1069-1083
    • Teboulle, M.1
  • 10
    • 56449095463 scopus 로고    scopus 로고
    • Message-passing for graph-structured linear programs: Proximal projections, convergence and rounding schemes
    • Pradeep Ravikumar, Alekh Agarwal, and Martin J Wainwright. Message-passing for graph-structured linear programs: Proximal projections, convergence and rounding schemes. In International Conference on Machine Learning, 2008.
    • (2008) International Conference on Machine Learning
    • Ravikumar, P.1    Agarwal, A.2    Wainwright, M.J.3
  • 12
    • 84965130991 scopus 로고    scopus 로고
    • Scalable Bayesian inference via particle mirror descent
    • abs/1506.03101
    • Bo Dai, Niao He, Hanjun Dai, and Le Song. Scalable Bayesian inference via particle mirror descent. Computing Research Repository, abs/1506.03101, 2015.
    • (2015) Computing Research Repository
    • Dai, B.1    He, N.2    Dai, H.3    Song, L.4
  • 13
    • 84969961962 scopus 로고    scopus 로고
    • A trust-region method for stochastic variational inference with applications to streaming data
    • Lucas Theis and Matthew D Hoffman. A trust-region method for stochastic variational inference with applications to streaming data. International Conference on Machine Learning, 2015.
    • (2015) International Conference on Machine Learning
    • Theis, L.1    Hoffman, M.D.2
  • 15
    • 84965097765 scopus 로고    scopus 로고
    • On the convergence of stochastic variational inference in Bayesian networks
    • Ulrich Paquet. On the convergence of stochastic variational inference in bayesian networks. NIPS Workshop on variational inference, 2014.
    • (2014) NIPS Workshop on Variational Inference
    • Paquet, U.1
  • 17
    • 0002144623 scopus 로고    scopus 로고
    • Bayesian non-linear independent component analysis by multilayer perceptrons
    • Springer
    • Harri Lappalainen and Antti Honkela. Bayesian non-linear independent component analysis by multilayer perceptrons. In Advances in independent component analysis, pages 93-121. Springer, 2000.
    • (2000) Advances in Independent Component Analysis , pp. 93-121
    • Lappalainen, H.1    Honkela, A.2
  • 18
    • 84877630966 scopus 로고    scopus 로고
    • Variational inference in nonconjugate models
    • April
    • Chong Wang and David M. Blei. Variational inference in nonconjugate models. J. Mach. Learn. Res., 14(1):1005-1031, April 2013.
    • (2013) J. Mach. Learn. Res. , vol.14 , Issue.1 , pp. 1005-1031
    • Wang, C.1    Blei, D.M.2
  • 19
    • 84856673666 scopus 로고    scopus 로고
    • Large scale Bayesian inference and experimental design for sparse linear models
    • M. Seeger and H. Nickisch. Large scale Bayesian inference and experimental design for sparse linear models. SIAM Journal of Imaging Sciences, 4(1):166-199, 2011.
    • (2011) SIAM Journal of Imaging Sciences , vol.4 , Issue.1 , pp. 166-199
    • Seeger, M.1    Nickisch, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.