-
1
-
-
84878919168
-
Stochastic variational inference
-
Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
2
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
Tim Salimans, David A Knowles, et al. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837-882, 2013.
-
(2013)
Bayesian Analysis
, vol.8
, Issue.4
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
5
-
-
0000147488
-
Online model selection based on the variational Bayes
-
Masa-Aki Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7):1649-1681, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1649-1681
-
-
Sato, M.-A.1
-
6
-
-
79551487646
-
Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes
-
A. Honkela, T. Raiko, M. Kuusela, M. Tornio, and J. Karhunen. Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes. The Journal of Machine Learning Research, 11:3235-3268, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.11
, pp. 3235-3268
-
-
Honkela, A.1
Raiko, T.2
Kuusela, M.3
Tornio, M.4
Karhunen, J.5
-
7
-
-
0034246689
-
Kullback proximal algorithms for maximum-likelihood estimation
-
Stéphane Chrétien and Alfred OIII Hero. Kullback proximal algorithms for maximum-likelihood estimation. Information Theory, IEEE Transactions on, 46(5):1800-1810, 2000.
-
(2000)
Information Theory, IEEE Transactions on
, vol.46
, Issue.5
, pp. 1800-1810
-
-
Chrétien, S.1
Hero, A.O.2
-
8
-
-
4043069783
-
An analysis of the EM algorithm and entropy-like proximal point methods
-
Paul Tseng. An analysis of the EM algorithm and entropy-like proximal point methods. Mathematics of Operations Research, 29(1):27-44, 2004.
-
(2004)
Mathematics of Operations Research
, vol.29
, Issue.1
, pp. 27-44
-
-
Tseng, P.1
-
9
-
-
0031285685
-
Convergence of proximal-like algorithms
-
M. Teboulle. Convergence of proximal-like algorithms. SIAM Jon Optimization, 7(4):1069-1083, 1997.
-
(1997)
SIAM Jon Optimization
, vol.7
, Issue.4
, pp. 1069-1083
-
-
Teboulle, M.1
-
10
-
-
56449095463
-
Message-passing for graph-structured linear programs: Proximal projections, convergence and rounding schemes
-
Pradeep Ravikumar, Alekh Agarwal, and Martin J Wainwright. Message-passing for graph-structured linear programs: Proximal projections, convergence and rounding schemes. In International Conference on Machine Learning, 2008.
-
(2008)
International Conference on Machine Learning
-
-
Ravikumar, P.1
Agarwal, A.2
Wainwright, M.J.3
-
12
-
-
84965130991
-
Scalable Bayesian inference via particle mirror descent
-
abs/1506.03101
-
Bo Dai, Niao He, Hanjun Dai, and Le Song. Scalable Bayesian inference via particle mirror descent. Computing Research Repository, abs/1506.03101, 2015.
-
(2015)
Computing Research Repository
-
-
Dai, B.1
He, N.2
Dai, H.3
Song, L.4
-
13
-
-
84969961962
-
A trust-region method for stochastic variational inference with applications to streaming data
-
Lucas Theis and Matthew D Hoffman. A trust-region method for stochastic variational inference with applications to streaming data. International Conference on Machine Learning, 2015.
-
(2015)
International Conference on Machine Learning
-
-
Theis, L.1
Hoffman, M.D.2
-
15
-
-
84965097765
-
On the convergence of stochastic variational inference in Bayesian networks
-
Ulrich Paquet. On the convergence of stochastic variational inference in bayesian networks. NIPS Workshop on variational inference, 2014.
-
(2014)
NIPS Workshop on Variational Inference
-
-
Paquet, U.1
-
17
-
-
0002144623
-
Bayesian non-linear independent component analysis by multilayer perceptrons
-
Springer
-
Harri Lappalainen and Antti Honkela. Bayesian non-linear independent component analysis by multilayer perceptrons. In Advances in independent component analysis, pages 93-121. Springer, 2000.
-
(2000)
Advances in Independent Component Analysis
, pp. 93-121
-
-
Lappalainen, H.1
Honkela, A.2
-
18
-
-
84877630966
-
Variational inference in nonconjugate models
-
April
-
Chong Wang and David M. Blei. Variational inference in nonconjugate models. J. Mach. Learn. Res., 14(1):1005-1031, April 2013.
-
(2013)
J. Mach. Learn. Res.
, vol.14
, Issue.1
, pp. 1005-1031
-
-
Wang, C.1
Blei, D.M.2
-
19
-
-
84856673666
-
Large scale Bayesian inference and experimental design for sparse linear models
-
M. Seeger and H. Nickisch. Large scale Bayesian inference and experimental design for sparse linear models. SIAM Journal of Imaging Sciences, 4(1):166-199, 2011.
-
(2011)
SIAM Journal of Imaging Sciences
, vol.4
, Issue.1
, pp. 166-199
-
-
Seeger, M.1
Nickisch, H.2
-
21
-
-
84965178330
-
-
arXiv preprint arXiv:1511.00146
-
Mohammad Emtiyaz Khan, Reza Babanezhad, Wu Lin, Mark Schmidt, and Masashi Sugiyama. Convergence of Proximal-Gradient Stochastic Variational Inference under Non-Decreasing Step-Size Sequence. arXiv preprint arXiv:1511.00146, 2015.
-
(2015)
Convergence of Proximal-gradient Stochastic Variational Inference Under Non-decreasing Step-size Sequence
-
-
Khan, M.E.1
Babanezhad, R.2
Lin, W.3
Schmidt, M.4
Sugiyama, M.5
|