메뉴 건너뛰기




Volumn 59, Issue 6, 2017, Pages 1104-1121

Boosting joint models for longitudinal and time-to-event data

Author keywords

Boosting; High dimensional data; Joint modeling; Longitudinal models; Time to event analysis; Variable selection

Indexed keywords

BAYESIAN NETWORKS; CLUSTERING ALGORITHMS; LEARNING SYSTEMS;

EID: 85015990186     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201600158     Document Type: Article
Times cited : (20)

References (41)
  • 3
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • Bühlmann, P. (2006). Boosting for high-dimensional linear models. The Annals of Statistics 34, 559–583.
    • (2006) The Annals of Statistics , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 5
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting (with discussion)
    • Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting (with discussion). Statistical Science 22, 477–522.
    • (2007) Statistical Science , vol.22 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 7
    • 84952019391 scopus 로고    scopus 로고
    • Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches
    • Chan, J. S. K. (2016). Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches. Biometrical Journal 58, 549–569.
    • (2016) Biometrical Journal , vol.58 , pp. 549-569
    • Chan, J.S.K.1
  • 8
    • 84880012299 scopus 로고    scopus 로고
    • A joint model for longitudinal continuous and time-to-event outcomes with direct marginal interpretation
    • Efendi, A., Molenberghs, G., Njagi, E. and Dendale, P. (2013). A joint model for longitudinal continuous and time-to-event outcomes with direct marginal interpretation. Biometrical Journal 55, 572–588.
    • (2013) Biometrical Journal , vol.55 , pp. 572-588
    • Efendi, A.1    Molenberghs, G.2    Njagi, E.3    Dendale, P.4
  • 9
    • 5044220677 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal profiles: pitfalls of the random-effects approach
    • Fieuws, S. and Verbeke, G. (2004). Joint modelling of multivariate longitudinal profiles: pitfalls of the random-effects approach. Statistics in Medicine 23, 3093–3104.
    • (2004) Statistics in Medicine , vol.23 , pp. 3093-3104
    • Fieuws, S.1    Verbeke, G.2
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29, 1189–1232.
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion)
    • Friedman, J. H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion). The Annals of Statistics 28, 337–407.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 0347093540 scopus 로고    scopus 로고
    • A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data
    • Gao, S. (2004). A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data. Statistics in Medicine 23, 211–219.
    • (2004) Statistics in Medicine , vol.23 , pp. 211-219
    • Gao, S.1
  • 14
    • 1342289473 scopus 로고    scopus 로고
    • Separate and joint modeling of longitudinal and event time data using standard computer packages
    • Guo, X. and Carlin, B. P. (2004). Separate and joint modeling of longitudinal and event time data using standard computer packages. The American Statistician 58, 16–24.
    • (2004) The American Statistician , vol.58 , pp. 16-24
    • Guo, X.1    Carlin, B.P.2
  • 15
    • 0141429907 scopus 로고    scopus 로고
    • Joint modelling of repeated measures and survival time data
    • Ha, I. D., Park, T. and Lee, Y. (2003). Joint modelling of repeated measures and survival time data. Biometrical Journal 45, 647–658.
    • (2003) Biometrical Journal , vol.45 , pp. 647-658
    • Ha, I.D.1    Park, T.2    Lee, Y.3
  • 16
    • 84991737500 scopus 로고    scopus 로고
    • Approaches to regularized regression–a comparison between gradient boosting and the lasso
    • Hepp, T., Schmid, M., Gefeller, O., Waldmann, E. and Mayr, A. (2016). Approaches to regularized regression–a comparison between gradient boosting and the lasso. Methods of Information in Medicine 55, 422–430.
    • (2016) Methods of Information in Medicine , vol.55 , pp. 422-430
    • Hepp, T.1    Schmid, M.2    Gefeller, O.3    Waldmann, E.4    Mayr, A.5
  • 17
    • 84931262233 scopus 로고    scopus 로고
    • Controlling false discoveries in high-dimensional situations: boosting with stability selection
    • Hofner, B., Boccuto, L. and Göker, B. (2015). Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinformatics 16.
    • (2015) BMC Bioinformatics , vol.16
    • Hofner, B.1    Boccuto, L.2    Göker, B.3
  • 18
    • 84893967115 scopus 로고    scopus 로고
    • Model-based boosting in R: a hands-on tutorial using the R package mboost
    • Hofner, B., Mayr, A., Robinzonov, N. and Schmid, M. (2014). Model-based boosting in R: a hands-on tutorial using the R package mboost. Computational Statistics 29, 3–35.
    • (2014) Computational Statistics , vol.29 , pp. 3-35
    • Hofner, B.1    Mayr, A.2    Robinzonov, N.3    Schmid, M.4
  • 19
    • 84992482383 scopus 로고    scopus 로고
    • gamboostLSS: an R package for model building and variable selection in the GAMLSS framework
    • Hofner, B., Mayr, A. and Schmid, M. (2016). gamboostLSS: an R package for model building and variable selection in the GAMLSS framework. Journal of Statistical Software 74, 1–31.
    • (2016) Journal of Statistical Software , vol.74 , pp. 1-31
    • Hofner, B.1    Mayr, A.2    Schmid, M.3
  • 20
    • 60849108916 scopus 로고    scopus 로고
    • Robust joint modeling of longitudinal measurements and competing risks failure time data
    • Li, N., Elashoff, R. M. and Li, G. (2009). Robust joint modeling of longitudinal measurements and competing risks failure time data. Biometrical Journal 51, 19–30.
    • (2009) Biometrical Journal , vol.51 , pp. 19-30
    • Li, N.1    Elashoff, R.M.2    Li, G.3
  • 21
    • 33846197443 scopus 로고    scopus 로고
    • A shared random effects model for censored medical costs and mortality
    • Liu, L., Wolfe, R. A. and Kalbfleisch, J. D. (2007). A shared random effects model for censored medical costs and mortality. Statistics in Medicine 26, 139–155.
    • (2007) Statistics in Medicine , vol.26 , pp. 139-155
    • Liu, L.1    Wolfe, R.A.2    Kalbfleisch, J.D.3
  • 22
    • 84914169260 scopus 로고    scopus 로고
    • The evolution of boosting algorithms—from machine learning to statistical modelling
    • Mayr, A., Binder, H., Gefeller, O. and Schmid, M. (2014a). The evolution of boosting algorithms—from machine learning to statistical modelling. Methods of Information in Medicine 53, 419–427.
    • (2014) Methods of Information in Medicine , vol.53 , pp. 419-427
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 23
    • 84914104651 scopus 로고    scopus 로고
    • Extending statistical boosting—an overview of recent methodological developments
    • Mayr, A., Binder, H., Gefeller, O. and Schmid, M. (2014b). Extending statistical boosting—an overview of recent methodological developments. Methods of Information in Medicine 53, 428–435.
    • (2014) Methods of Information in Medicine , vol.53 , pp. 428-435
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 26
    • 84979031616 scopus 로고    scopus 로고
    • Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection
    • Mayr, A., Hofner, B. and Schmid, M. (2016). Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection. BMC Bioinformatics 17. doi: 10.1186/s12859-016-1149-8.
    • (2016) BMC Bioinformatics , vol.17
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 30
    • 77955157844 scopus 로고    scopus 로고
    • JM: an R package for the joint modelling of longitudinal and time-to-event data
    • Rizopoulos, D. (2010). JM: an R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35, 1–33.
    • (2010) Journal of Statistical Software , vol.35 , pp. 1-33
    • Rizopoulos, D.1
  • 33
    • 77953324042 scopus 로고    scopus 로고
    • Estimation and regularization techniques for regression models with multidimensional prediction functions
    • Schmid, M., Potapov, S., Pfahlberg, A., and Hothorn, T. (2010). Estimation and regularization techniques for regression models with multidimensional prediction functions. Statistics and Computing 20, 139–150.
    • (2010) Statistics and Computing , vol.20 , pp. 139-150
    • Schmid, M.1    Potapov, S.2    Pfahlberg, A.3    Hothorn, T.4
  • 35
    • 80052418167 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture
    • Sweeting, M. J. and Thompson, S. G. (2011). Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biometrical Journal 53, 750–763.
    • (2011) Biometrical Journal , vol.53 , pp. 750-763
    • Sweeting, M.J.1    Thompson, S.G.2
  • 36
    • 84880046700 scopus 로고    scopus 로고
    • The effect of social deprivation on clinical outcomes and the use of treatments in the uk cystic fibrosis population: a longitudinal study
    • Taylor-Robinson, D., Smyth, R. L., Diggle, P. and Whitehead, M. (2013). The effect of social deprivation on clinical outcomes and the use of treatments in the uk cystic fibrosis population: a longitudinal study. Lancet Respiratory Medicine 1, 121–128.
    • (2013) Lancet Respiratory Medicine , vol.1 , pp. 121-128
    • Taylor-Robinson, D.1    Smyth, R.L.2    Diggle, P.3    Whitehead, M.4
  • 38
    • 8644246036 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and time-to-event data: an overview
    • Tsiatis, A. and Davidian, M. (2004). Joint modelling of longitudinal and time-to-event data: an overview. Statistica Sinica 14, 809–834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.1    Davidian, M.2
  • 39
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modeling with implicit variable selection by likelihood-based boosting
    • Tutz, G. and Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics 62, 961–971.
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 40
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330–339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.1    Tsiatis, A.2
  • 41
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: convergence and consistency
    • Zhang, T. and Yu, B. (2004). Boosting with early stopping: convergence and consistency. The Annals of Statistics 33, 1538–1579.
    • (2004) The Annals of Statistics , vol.33 , pp. 1538-1579
    • Zhang, T.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.