메뉴 건너뛰기




Volumn 74, Issue , 2016, Pages

GamboostLSS: An R package for model building and variable selection in the GAMLSS framework

Author keywords

Additive models; High dimensional data; Prediction intervals

Indexed keywords


EID: 84992482383     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/jss.v074.i01     Document Type: Article
Times cited : (60)

References (48)
  • 5
    • 0000245743 scopus 로고    scopus 로고
    • Statistical Modeling: The Two Cultures
    • Breiman L (2001). “Statistical Modeling: The Two Cultures.” Statistical Science, 16(3), 199-231. doi:10.1214/ss/1009213726.
    • (2001) Statistical Science , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 7
    • 49749147915 scopus 로고    scopus 로고
    • Boosting Algorithms: Regularization, Prediction and Model Fitting
    • Bühlmann P, Hothorn T (2007). “Boosting Algorithms: Regularization, Prediction and Model Fitting.” Statistical Science, 22(4), 477-522. doi:10.1214/07-sts242rej.
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 8
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the L2 Loss: Regression and Classification
    • Bühlmann P, Yu B (2003). “Boosting with the L2 Loss: Regression and Classification.” Journal of the American Statistical Association, 98(462), 324-338. doi:10.1198/016214503000125.
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.462 , pp. 324-338
    • Bühlmann, P.1    Yu, B.2
  • 10
    • 33747086270 scopus 로고    scopus 로고
    • WHO Child Growth Standards Based on Length/Height, Weight and Age
    • De Onis M (2006). “WHO Child Growth Standards Based on Length/Height, Weight and Age.” Acta Paediatrica, 95(S450), 76-85. doi:10.1111/j.1651-2227.2006.tb02378.x.
    • (2006) Acta Paediatrica , vol.95 , Issue.S450 , pp. 76-85
    • De Onis, M.1
  • 11
    • 0027730242 scopus 로고
    • The Worldwide Magnitude of Protein-Energy Malnutrition: An Overview from the WHO Global Database on Child Growth
    • De Onis M, Monteiro C, Akre J, Clugston G (1993). “The Worldwide Magnitude of Protein-Energy Malnutrition: An Overview from the WHO Global Database on Child Growth.” Bulletin of the World Health Organizationy, 71(6), 703-712.
    • (1993) Bulletin of the World Health Organizationy , vol.71 , Issue.6 , pp. 703-712
    • De Onis, M.1    Monteiro, C.2    Akre, J.3    Clugston, G.4
  • 12
    • 25444532788 scopus 로고    scopus 로고
    • Flexible Smoothing with B-Splines and Penalties
    • Eilers P, Marx B (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical Science, 11(2), 89-121. doi:10.1214/ss/1038425655.
    • (1996) Statistical Science , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.1    Marx, B.2
  • 14
    • 84892623329 scopus 로고    scopus 로고
    • Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression
    • Fenske N, Burns J, Hothorn T, Rehfuess E (2013). “Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression.” PLOS ONE, 8(11), e78692. doi:10.1371/journal.pone.0078692.
    • (2013) PLOS ONE , vol.8 , Issue.11
    • Fenske, N.1    Burns, J.2    Hothorn, T.3    Rehfuess, E.4
  • 15
    • 79960127235 scopus 로고    scopus 로고
    • Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
    • Fenske N, Kneib T, Hothorn T (2011). “Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression.” Journal of the American Statistical Association, 106(494), 494-510. doi:10.1198/jasa.2011.ap09272.
    • (2011) Journal of the American Statistical Association , vol.106 , Issue.494 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 16
    • 49749102427 scopus 로고    scopus 로고
    • Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting
    • Hastie T (2007). “Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting.” Statistical Science, 22(4), 513-515. doi:10.1214/07-sts242a.
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 513-515
    • Hastie, T.1
  • 18
    • 84893918341 scopus 로고    scopus 로고
    • Ph.D. thesis, LMU München. Verlag Dr. Hut, München
    • Hofner B (2011). Boosting in Structured Additive Models. Ph.D. thesis, LMU München. Verlag Dr. Hut, München, URL http://nbn-resolving.de/urn:nbn:de:bvb:19-138053.
    • (2011) Boosting in Structured Additive Models
    • Hofner, B.1
  • 19
    • 84953350942 scopus 로고    scopus 로고
    • A Unified Framework of Constrained Regression
    • Hofner B, Kneib T, Hothorn T (2016a). “A Unified Framework of Constrained Regression.” Statistics and Computing, 26(1), 1-14. doi:10.1007/s11222-014-9520-y.
    • (2016) Statistics and Computing , vol.26 , Issue.1 , pp. 1-14
    • Hofner, B.1    Kneib, T.2    Hothorn, T.3
  • 21
    • 84893967115 scopus 로고    scopus 로고
    • Model-Based Boosting in R-A Hands-on Tutorial Using the R Package mboost
    • Hofner B, Mayr A, Robinzonov N, Schmid M (2014). “Model-Based Boosting in R-A Hands-on Tutorial Using the R Package mboost.” Computational Statistics, 29, 3-35. doi:10.1007/s00180-012-0382-5.
    • (2014) Computational Statistics , vol.29 , pp. 3-35
    • Hofner, B.1    Mayr, A.2    Robinzonov, N.3    Schmid, M.4
  • 22
    • 80053616945 scopus 로고    scopus 로고
    • Monotonicity-Constrained Species Distribution Models
    • Hofner B, Müller J, Hothorn T (2011). “Monotonicity-Constrained Species Distribution Models.” Ecology, 92(10), 1895-1901. doi:10.1890/10-2276.1.
    • (2011) Ecology , vol.92 , Issue.10 , pp. 1895-1901
    • Hofner, B.1    Müller, J.2    Hothorn, T.3
  • 25
    • 38049126127 scopus 로고    scopus 로고
    • A Comparison of Parametric and Nonparametric Methods for Normalising cDNA Microarray Data
    • Khondoker M, Glasbey C, Worton B (2009). “A Comparison of Parametric and Nonparametric Methods for Normalising cDNA Microarray Data.” Biometrical Journal, 49(6), 815-823. doi:10.1002/bimj.200610338.
    • (2009) Biometrical Journal , vol.49 , Issue.6 , pp. 815-823
    • Khondoker, M.1    Glasbey, C.2    Worton, B.3
  • 27
    • 66949120727 scopus 로고    scopus 로고
    • Variable Selection and Model Choice in Geoadditive Regression Models
    • Kneib T, Hothorn T, Tutz G (2009). “Variable Selection and Model Choice in Geoadditive Regression Models.” Biometrics, 65(2), 626-634. doi:10.1111/j.1541-0420.2008.01112.x.
    • (2009) Biometrics , vol.65 , Issue.2 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 28
    • 84873583932 scopus 로고    scopus 로고
    • New Birth Weight Reference Standards Customised to Birth Order and Sex of Babies from South India
    • Kumar V, Jeyaseelan L, Sebastian T, Regi A, Mathew J, Jose R (2013). “New Birth Weight Reference Standards Customised to Birth Order and Sex of Babies from South India.” BMC Pregnancy and Childbirth, 13(1), 1-8. doi:10.1186/1471-2393-13-38.
    • (2013) BMC Pregnancy and Childbirth , vol.13 , Issue.1 , pp. 1-8
    • Kumar, V.1    Jeyaseelan, L.2    Sebastian, T.3    Regi, A.4    Mathew, J.5    Jose, R.6
  • 29
    • 84914169260 scopus 로고    scopus 로고
    • The Evolution of Boosting Algorithms-From Machine Learning to Statistical Modelling
    • Mayr A, Binder H, Gefeller O, Schmid M (2014). “The Evolution of Boosting Algorithms-From Machine Learning to Statistical Modelling.” Methods of Information in Medicine, 53(6), 419-427. doi:10.3414/me13-01-0122.
    • (2014) Methods of Information in Medicine , vol.53 , Issue.6 , pp. 419-427
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 30
    • 84859815011 scopus 로고    scopus 로고
    • Generalized Additive Models for Location, Scale and Shape for High Dimensional Data-A Flexible Approach Based on Boosting
    • Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012a). “Generalized Additive Models for Location, Scale and Shape for High Dimensional Data-A Flexible Approach Based on Boosting.” Journal of the Royal Statistical Society C, 61(3), 403-427. doi:10.1111/j.1467-9876.2011.01033.x.
    • (2012) Journal of the Royal Statistical Society C , vol.61 , Issue.3 , pp. 403-427
    • Mayr, A.1    Fenske, N.2    Hofner, B.3    Kneib, T.4    Schmid, M.5
  • 31
    • 84858743801 scopus 로고    scopus 로고
    • The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting
    • Mayr A, Hofner B, Schmid M (2012b). “The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting.” Methods of Information in Medicine, 51(2), 178-186. doi:10.3414/me11-02-0030.
    • (2012) Methods of Information in Medicine , vol.51 , Issue.2 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 32
    • 84856094557 scopus 로고    scopus 로고
    • Prediction Intervals for Future BMI Values of Individual Children-A Non-Parametric Approach by Quantile Boosting
    • Mayr A, Hothorn T, Fenske N (2012c). “Prediction Intervals for Future BMI Values of Individual Children-A Non-Parametric Approach by Quantile Boosting.” BMC Medical Research Methodology, 12(6). doi:10.1186/1471-2288-12-6.
    • (2012) BMC Medical Research Methodology , vol.12 , Issue.6
    • Mayr, A.1    Hothorn, T.2    Fenske, N.3
  • 33
    • 84961153928 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Austria
    • R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
    • (2016) R Foundation for Statistical Computing
    • Core Team, R.1
  • 34
    • 18544382833 scopus 로고    scopus 로고
    • Generalized Additive Models for Location, Scale and Shape
    • Rigby R, Stasinopoulos D (2005). “Generalized Additive Models for Location, Scale and Shape.” Journal of the Royal Statistical Society C, 54(3), 507-554. doi:10.1111/j.1467-9876.2005.00510.x.
    • (2005) Journal of the Royal Statistical Society C , vol.54 , Issue.3 , pp. 507-554
    • Rigby, R.1    Stasinopoulos, D.2
  • 35
    • 84906062174 scopus 로고    scopus 로고
    • Automatic Smoothing Parameter Selection in GAMLSS with an Application to Centile Estimation
    • Rigby R, Stasinopoulos D (2014). “Automatic Smoothing Parameter Selection in GAMLSS with an Application to Centile Estimation.” Statistical Methods in Medical Research, 23(4), 318-332. doi:10.1177/0962280212473302.
    • (2014) Statistical Methods in Medical Research , vol.23 , Issue.4 , pp. 318-332
    • Rigby, R.1    Stasinopoulos, D.2
  • 36
    • 77953324042 scopus 로고    scopus 로고
    • Estimation and Regularization Techniques for Regression Models with Multidimensional Prediction Functions
    • Schmid M, Potapov S, Pfahlberg A, Hothorn T (2010). “Estimation and Regularization Techniques for Regression Models with Multidimensional Prediction Functions.” Statistics and Computing, 20(2), 139-150. doi:10.1007/s11222-009-9162-7.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 139-150
    • Schmid, M.1    Potapov, S.2    Pfahlberg, A.3    Hothorn, T.4
  • 38
    • 84866145966 scopus 로고    scopus 로고
    • A Modular Class of Multisite Monthly Rainfall Generators for Water Resource Management and Impact Studies
    • Serinaldi F, Kilsby C (2012). “A Modular Class of Multisite Monthly Rainfall Generators for Water Resource Management and Impact Studies.” Journal of Hydrology, 464-465, 528-540. doi:10.1016/j.jhydrol.2012.07.043.
    • (2012) Journal of Hydrology , vol.464-465 , pp. 528-540
    • Serinaldi, F.1    Kilsby, C.2
  • 40
    • 40549109271 scopus 로고    scopus 로고
    • Generalized Additive Models for Location Scale and Shape (GAMLSS) in R
    • Stasinopoulos D, Rigby R (2007). “Generalized Additive Models for Location Scale and Shape (GAMLSS) in R.” Journal of Statistical Software, 23(7), 1-46. doi:10.18637/jss.v023.i07.
    • (2007) Journal of Statistical Software , vol.23 , Issue.7 , pp. 1-46
    • Stasinopoulos, D.1    Rigby, R.2
  • 45
    • 84981313753 scopus 로고    scopus 로고
    • Structured Additive Regression Models: An R Interface to BayesX
    • Umlauf N, Adler D, Kneib T, Lang S, Zeileis A (2015). “Structured Additive Regression Models: An R Interface to BayesX.” Journal of Statistical Software, 63(21), 1-46. doi:10.18637/jss.v063.i21.
    • (2015) Journal of Statistical Software , vol.63 , Issue.21 , pp. 1-46
    • Umlauf, N.1    Adler, D.2    Kneib, T.3    Lang, S.4    Zeileis, A.5
  • 48
    • 67650596615 scopus 로고    scopus 로고
    • Flood Frequency Analysis for Nonstationary Annual Peak Records in an Urban Drainage Basin
    • Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009). “Flood Frequency Analysis for Nonstationary Annual Peak Records in an Urban Drainage Basin.” Advances in Water Resources, 32(8), 1255-1266. doi:10.1016/j.advwatres.2009.05.003.
    • (2009) Advances in Water Resources , vol.32 , Issue.8 , pp. 1255-1266
    • Villarini, G.1    Smith, J.A.2    Serinaldi, F.3    Bales, J.4    Bates, P.D.5    Krajewski, W.F.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.