메뉴 건너뛰기




Volumn 58, Issue 3, 2016, Pages 549-569

Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches

Author keywords

Bayesian analysis; Conditional and joint model; Informative dropout; Longitudinal binary data; Selection model

Indexed keywords

DROPS; PARAMETER ESTIMATION; RANDOM PROCESSES;

EID: 84952019391     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201400064     Document Type: Article
Times cited : (12)

References (48)
  • 1
    • 14144252238 scopus 로고    scopus 로고
    • A random effects transition model for longitudinal binary data with informative missingness
    • Albert, P. S. and Follmann, D. A. (2003). A random effects transition model for longitudinal binary data with informative missingness. Statistica Neerlandica 57, 100-111.
    • (2003) Statistica Neerlandica , vol.57 , pp. 100-111
    • Albert, P.S.1    Follmann, D.A.2
  • 2
    • 35649000012 scopus 로고    scopus 로고
    • Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data
    • Albert, P. S. and Follmann, D. A. (2007). Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Statistical Methods in Medical Research 16, 417-439.
    • (2007) Statistical Methods in Medical Research , vol.16 , pp. 417-439
    • Albert, P.S.1    Follmann, D.A.2
  • 3
    • 0042226485 scopus 로고    scopus 로고
    • Random coefficient models for binary longitudinal responses with attrition
    • Alfo, M. and Aitkin, M. (2000). Random coefficient models for binary longitudinal responses with attrition. Statistics and Computing 10, 279-287.
    • (2000) Statistics and Computing , vol.10 , pp. 279-287
    • Alfo, M.1    Aitkin, M.2
  • 4
    • 0442293858 scopus 로고    scopus 로고
    • A hierarchical latent variable model for ordinal data from a customer satisfaction survey with 'no answer' responses
    • Bradlow, E. T. and Zaslavsky, A. M. (1999). A hierarchical latent variable model for ordinal data from a customer satisfaction survey with 'no answer' responses. Journal of American Statistical Association 94, 43-52.
    • (1999) Journal of American Statistical Association , vol.94 , pp. 43-52
    • Bradlow, E.T.1    Zaslavsky, A.M.2
  • 5
    • 0031478066 scopus 로고    scopus 로고
    • A Likelihood approach to analysing longitudinal bivariate binary data
    • Chan, J. S. K., Kuk, A. Y. C. and Bell, J. (1997). A Likelihood approach to analysing longitudinal bivariate binary data. Biometrical Journal 39, 409-421.
    • (1997) Biometrical Journal , vol.39 , pp. 409-421
    • Chan, J.S.K.1    Kuk, A.Y.C.2    Bell, J.3
  • 6
    • 0039177382 scopus 로고    scopus 로고
    • The analysis of methadone clinic data using marginal and conditional logistic models with mixture or random effects
    • Chan, J. S. K., Kuk, A. Y. C., Bell, J. and McGilchrist, C. (1998). The analysis of methadone clinic data using marginal and conditional logistic models with mixture or random effects. Australian and New Zealand Journal of Statistics 40, 1-10.
    • (1998) Australian and New Zealand Journal of Statistics , vol.40 , pp. 1-10
    • Chan, J.S.K.1    Kuk, A.Y.C.2    Bell, J.3    McGilchrist, C.4
  • 7
    • 0039927441 scopus 로고    scopus 로고
    • Initial stage problem in autoregressive binary regression
    • Chan, J. S. K. (2000). Initial stage problem in autoregressive binary regression. The Statistician 49, 495-502.
    • (2000) The Statistician , vol.49 , pp. 495-502
    • Chan, J.S.K.1
  • 8
    • 18644364561 scopus 로고    scopus 로고
    • Monte Carlo approximation through Gibbs output in generalized linear mixed models
    • Chan, J. S. K., Kuk, A. Y. C. and Yam, H. K. (2005). Monte Carlo approximation through Gibbs output in generalized linear mixed models. Journal of Multivariate Analysis 94, 300-312.
    • (2005) Journal of Multivariate Analysis , vol.94 , pp. 300-312
    • Chan, J.S.K.1    Kuk, A.Y.C.2    Yam, H.K.3
  • 10
    • 79251596999 scopus 로고    scopus 로고
    • Bayesian approach to analysing longitudinal bivariate binary data with informative dropout
    • Chan, J. S. K. and Wan, W. Y. (2011). Bayesian approach to analysing longitudinal bivariate binary data with informative dropout. Computational Statistics 26, 121-144.
    • (2011) Computational Statistics , vol.26 , pp. 121-144
    • Chan, J.S.K.1    Wan, W.Y.2
  • 13
    • 0002276548 scopus 로고    scopus 로고
    • Bayesian tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable missingness
    • Cowles, M. K., Carlin, B. P. and Connett, J. E. (1996). Bayesian tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable missingness. Journal of American Statistical Association 91, 86-98.
    • (1996) Journal of American Statistical Association , vol.91 , pp. 86-98
    • Cowles, M.K.1    Carlin, B.P.2    Connett, J.E.3
  • 14
    • 84993778704 scopus 로고    scopus 로고
    • The common structure of several models for non-ignorable dropout
    • Crouchley, R. and Ganjali, M. (2002). The common structure of several models for non-ignorable dropout. Statistical Modeling 2, 39-62.
    • (2002) Statistical Modeling , vol.2 , pp. 39-62
    • Crouchley, R.1    Ganjali, M.2
  • 15
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • Demirtas, H. and Schafer, J. L. (2002). On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 22, 2553-2575.
    • (2002) Statistics in Medicine , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 16
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal analysis (with discussion)
    • Diggle, P. J. and Kenward, M. G. (1994). Informative drop-out in longitudinal analysis (with discussion). Applied Statistics 43, 49-93.
    • (1994) Applied Statistics , vol.43 , pp. 49-93
    • Diggle, P.J.1    Kenward, M.G.2
  • 17
    • 0035103375 scopus 로고    scopus 로고
    • Factor analytic models of clustered multivariate data with informative censoring
    • Dunson, D. B. and Perreault, S. D. (2001). Factor analytic models of clustered multivariate data with informative censoring. Biometrics 57, 302-308.
    • (2001) Biometrics , vol.57 , pp. 302-308
    • Dunson, D.B.1    Perreault, S.D.2
  • 20
    • 0035105253 scopus 로고    scopus 로고
    • Bias in estimating association parameters for longitudinal binary responses with drop-outs
    • Fitzmaurice, G. M., Lipsitz, S. R., Molenberghs, G. and Ibrahim, J. G. (2001). Bias in estimating association parameters for longitudinal binary responses with drop-outs. Biometrics 57, 15-21.
    • (2001) Biometrics , vol.57 , pp. 15-21
    • Fitzmaurice, G.M.1    Lipsitz, S.R.2    Molenberghs, G.3    Ibrahim, J.G.4
  • 24
    • 0003129721 scopus 로고
    • Selection modeling versus mixture modeling with nonignorable nonresponse
    • Wainer, H. (Ed.), Springer, New York, NY -.
    • Glynn, J. J., Laird, N. M. and Rubin, D. B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponse. In: Wainer, H. (Ed.), Drawing Inferences from Self Selected Samples, Springer, New York, NY, pp. 115-142.
    • (1986) Drawing Inferences from Self Selected Samples , pp. 115-142
    • Glynn, J.J.1    Laird, N.M.2    Rubin, D.B.3
  • 25
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov Chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 26
    • 0023716933 scopus 로고
    • Missing data in longitudinal studies
    • Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305-315.
    • (1988) Statistics in Medicine , vol.7 , pp. 305-315
    • Laird, N.M.1
  • 27
    • 85153028719 scopus 로고    scopus 로고
    • Bayesian Inference on Mixtures of Distributions, Working paper.
    • Lee, K., Marin, J., Mengersen, K. and Robert, C. P. (2008). Bayesian Inference on Mixtures of Distributions, Working paper.
    • (2008)
    • Lee, K.1    Marin, J.2    Mengersen, K.3    Robert, C.P.4
  • 29
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of American Statistical Association 88, 125-134.
    • (1993) Journal of American Statistical Association , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 30
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal missing data
    • Little, R. J. A. (1994). A class of pattern-mixture models for normal missing data. Biometrika 81, 471-483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 31
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of American Statistical Association 90, 1112-1121.
    • (1995) Journal of American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 33
    • 0037197628 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to drop-out
    • Michiels, B., Molenberghs, G., Bijnens, L., Vangeneugden, T. and Thijs, H. (2002). Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to drop-out. Statistics in Medicine 21, 1023-1041.
    • (2002) Statistics in Medicine , vol.21 , pp. 1023-1041
    • Michiels, B.1    Molenberghs, G.2    Bijnens, L.3    Vangeneugden, T.4    Thijs, H.5
  • 34
    • 0037196222 scopus 로고    scopus 로고
    • Bias adjustment in analyzing longitudinal data with informative missingness
    • Park, S., Palta, M., Shao, J. and Shen, L. (2002). Bias adjustment in analyzing longitudinal data with informative missingness. Statistics in Medicine 21, 277-291.
    • (2002) Statistics in Medicine , vol.21 , pp. 277-291
    • Park, S.1    Palta, M.2    Shao, J.3    Shen, L.4
  • 35
    • 0037445467 scopus 로고    scopus 로고
    • Pattern mixture models for longitudinal quality of life studies in advanced stage disease
    • Pauler, D. K., McCoy, S. and Moinpour, C. (2003). Pattern mixture models for longitudinal quality of life studies in advanced stage disease. Statistics in Medicine 22, 795-809.
    • (2003) Statistics in Medicine , vol.22 , pp. 795-809
    • Pauler, D.K.1    McCoy, S.2    Moinpour, C.3
  • 37
    • 0037202104 scopus 로고    scopus 로고
    • Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random
    • Preisser, J. S., Lohman, K. K. and Rathouz, P. (2002). Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Statistics in Medicine 21, 3035-3054.
    • (2002) Statistics in Medicine , vol.21 , pp. 3035-3054
    • Preisser, J.S.1    Lohman, K.K.2    Rathouz, P.3
  • 38
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of American Statistical Association 90, 106-121.
    • (1995) Journal of American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 39
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 40
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods
    • Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society, Series B 55, 3-23.
    • (1993) Journal of the Royal Statistical Society, Series B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 42
    • 85152987521 scopus 로고    scopus 로고
    • Bayesian inference using Gibbs sampling for Window Version (WinBUGS), MRC Biostatistics Unit, Institute of Public health, Cambridge, UK
    • Spiegelhalter, D., Thomas, A. and Best, N. (2003). Bayesian inference using Gibbs sampling for Window Version (WinBUGS), MRC Biostatistics Unit, Institute of Public health, Cambridge, UK (www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml).
    • (2003)
    • Spiegelhalter, D.1    Thomas, A.2    Best, N.3
  • 43
    • 0346102882 scopus 로고    scopus 로고
    • Maximum likelihood methods for nonignorable missing responses and covariates in random effects models
    • Stubbendich, A. L. and Ibrahim, J. G. (2003). Maximum likelihood methods for nonignorable missing responses and covariates in random effects models. Biometrics 59, 1140-1150.
    • (2003) Biometrics , vol.59 , pp. 1140-1150
    • Stubbendich, A.L.1    Ibrahim, J.G.2
  • 44
    • 0036191541 scopus 로고    scopus 로고
    • Mixed effects logistic regression models for multiple longitudinal binary functional limitation responses with informative drop-out and confounding by baseline outcomes
    • Ten, and
    • Ten Have, T. R., Reboussin, B. A., Miller, M. E. and Kunselman, A. (2002). Mixed effects logistic regression models for multiple longitudinal binary functional limitation responses with informative drop-out and confounding by baseline outcomes. Biometrics 58, 137-144.
    • (2002) Biometrics , vol.58 , pp. 137-144
    • Have, T.R.1    Reboussin, B.A.2    Miller, M.E.3    Kunselman, A.4
  • 45
    • 0039982650 scopus 로고    scopus 로고
    • Analysis of longitudinal data with non-ignorable non-monotone missing values
    • Troxel, A. B. (1998). Analysis of longitudinal data with non-ignorable non-monotone missing values. Applied Statistics 47, 425-438.
    • (1998) Applied Statistics , vol.47 , pp. 425-438
    • Troxel, A.B.1
  • 46
    • 0035102436 scopus 로고    scopus 로고
    • Sensitivity analysis for nonrandom dropout: a local influence approach
    • Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E. and Kenward, M. G. (2001). Sensitivity analysis for nonrandom dropout: a local influence approach. Biometrics 57, 7-14.
    • (2001) Biometrics , vol.57 , pp. 7-14
    • Verbeke, G.1    Molenberghs, G.2    Thijs, H.3    Lesaffre, E.4    Kenward, M.G.5
  • 47
    • 0036732922 scopus 로고    scopus 로고
    • A Monte Carlo EM algorithm for random-coefficient-based dropout models
    • Verzilli, C. J. and Carpenter, J. R. (2002). A Monte Carlo EM algorithm for random-coefficient-based dropout models. Journal of Applied Statistics 29, 1011-1021.
    • (2002) Journal of Applied Statistics , vol.29 , pp. 1011-1021
    • Verzilli, C.J.1    Carpenter, J.R.2
  • 48
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.