메뉴 건너뛰기




Volumn 55, Issue 5, 2016, Pages 422-430

Approaches to regularized regression - A comparison between gradient boosting and the lasso

Author keywords

Boosting; High dimensional data; Lasso; Penalization; Regularization; Variable selection

Indexed keywords

ALGORITHM; COMPARATIVE STUDY; COMPUTER SIMULATION; MATHEMATICAL COMPUTING; REGRESSION ANALYSIS; REPRODUCIBILITY; SIGNAL PROCESSING; SOFTWARE; THEORETICAL MODEL;

EID: 84991737500     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.3414/ME16-01-0033     Document Type: Article
Times cited : (105)

References (53)
  • 1
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Inza In, Larrañaga P
    • Saeys Y, Inza In, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007; 23(19): 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1
  • 3
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • Bühlmann P, Hothorn T. Boosting algorithms: regularization, prediction and model fitting. Stat Sci. 2007; 22(4): 477-505.
    • (2007) Stat Sci , vol.22 , Issue.4 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 4
    • 84914169260 scopus 로고    scopus 로고
    • The evolution of boosting algorithms. From machine learning to statistical modelling
    • Mayr A, Binder H, Gefeller O, Schmid M. The evolution of boosting algorithms. From machine learning to statistical modelling. Meth Inf Med. 2014; 53(6): 419-427.
    • (2014) Meth Inf Med , vol.53 , Issue.6 , pp. 419-427
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 5
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
    • Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Statist. 2000; 28(2): 337-407.
    • (2000) Ann Statist , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 84914167843 scopus 로고    scopus 로고
    • Boostingan unusual yet attractive optimiser
    • Hothorn T. Boostingan unusual yet attractive optimiser. Meth Inf Med. 2014; 53(6): 417-418.
    • (2014) Meth Inf Med , vol.53 , Issue.6 , pp. 417-418
    • Hothorn, T.1
  • 9
    • 84914148148 scopus 로고    scopus 로고
    • Discussion of The evolution of boosting algorithms and Extending statistical boosting
    • Bühlmann P, Gertheiss J, Hieke S, Kneib T, Ma S, Schumacher M, et al. Discussion of The evolution of boosting algorithms and Extending statistical boosting. Meth Inf Med. 2014; 53(6): 436-445.
    • (2014) Meth Inf Med , vol.53 , Issue.6 , pp. 436-445
    • Bühlmann, P.1    Gertheiss, J.2    Hieke, S.3    Kneib, T.4    Ma, S.5    Schumacher, M.6
  • 10
    • 84942487147 scopus 로고
    • Ridge regression: Applications to nonorthogonal problems
    • Hoerl AE, Kennard RW. Ridge regression: applications to nonorthogonal problems. Technometrics. 1970; 12: 69-82.
    • (1970) Technometrics , vol.12 , pp. 69-82
    • Hoerl, A.E.1    Kennard, R.W.2
  • 11
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman L. Better subset regression using the nonnegative garrote. Technometrics. 1995; 37(4): 373-384.
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 12
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight K, Fu W. Asymptotics for lasso-type estimators. Ann Statist. 2000; 28(5): 1356-1378.
    • (2000) Ann Statist , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 13
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • Greenshtein E, Ritov Y. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli. 2004; 10(6): 971-988.
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 14
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • Bunea F, Tsybakov A, Wegkamp M. Sparsity oracle inequalities for the Lasso. Electron J Stat. 2007; 1: 169-194.
    • (2007) Electron J Stat , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 15
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • van de Geer SA. High-dimensional generalized linear models and the lasso. Ann Statist. 2008; 36(2): 614-645.
    • (2008) Ann Statist , vol.36 , Issue.2 , pp. 614-645
    • Van De Geer, S.A.1
  • 16
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Ann Statist. 2006; 34(3): 1436-1462.
    • (2006) Ann Statist , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 17
    • 33845263263 scopus 로고    scopus 로고
    • On Model Selection Consistency of Lasso
    • Zhao P, Yu B. On Model Selection Consistency of Lasso. J Mach Learn Res. 2006; 7: 2541-2563.
    • (2006) J Mach Learn Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 18
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and Its Oracle Properties
    • Zou H. The Adaptive Lasso and Its Oracle Properties. J Am Stat Assoc. 2006; 101(476): 1418-1429.
    • (2006) J am Stat Assoc , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 19
    • 65749083666 scopus 로고    scopus 로고
    • Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using -Constrained Quadratic Programming (Lasso)
    • Wainwright MJ. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using -Constrained Quadratic Programming (Lasso). IEEE Trans Inf Theory. 2009; 55(5): 2183-2202.
    • (2009) IEEE Trans Inf Theory , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.J.1
  • 20
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the Lasso selection in high-dimensional linear regression
    • Zhang CH, Huang J. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Ann Statist. 2008; 36(4): 1567-1594.
    • (2008) Ann Statist , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 21
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Meinshausen N, Yu B. Lasso-type recovery of sparse representations for high-dimensional data. Ann Statist. 2009; 37(1): 246-270.
    • (2009) Ann Statist , vol.37 , Issue.1 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 22
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • Zhang T, Yu B. Boosting with early stopping: Convergence and consistency. Ann Statist. 2005; 33(4): 1538-1579.
    • (2005) Ann Statist , vol.33 , Issue.4 , pp. 1538-1579
    • Zhang, T.1    Yu, B.2
  • 23
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • Bühlmann P. Boosting for high-dimensional linear models. Ann Statist. 2006; 34(2): 559-583.
    • (2006) Ann Statist , vol.34 , Issue.2 , pp. 559-583
    • Bühlmann, P.1
  • 24
    • 84858743801 scopus 로고    scopus 로고
    • The importance of knowing when to stopa sequential stopping rule for component-wise gradient boosting
    • Mayr A, Hofner B, Schmid M. The importance of knowing when to stopa sequential stopping rule for component-wise gradient boosting. Meth Inf Med. 2012; 51(2): 178-186.
    • (2012) Meth Inf Med , vol.51 , Issue.2 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 26
    • 50849120401 scopus 로고    scopus 로고
    • Discussion: A tale of three cousins: Lasso, l2boosting and Dantzig
    • Meinshausen N, Rocha G, Yu B. Discussion: a tale of three cousins: Lasso, l2boosting and Dantzig. Ann Statist. 2007; 35(6): 2373-2384.
    • (2007) Ann Statist , vol.35 , Issue.6 , pp. 2373-2384
    • Meinshausen, N.1    Rocha, G.2    Yu, B.3
  • 27
    • 84869162742 scopus 로고    scopus 로고
    • On lars/homotopy equivalence conditions for over-determined lasso
    • Duan J, Soussen C, Brie D, Idier J, Wang YP. On lars/homotopy equivalence conditions for over-determined lasso. IEEE Signal Process Lett. 2012; 19(12): 894-897.
    • (2012) IEEE Signal Process Lett , vol.19 , Issue.12 , pp. 894-897
    • Duan, J.1    Soussen, C.2    Brie, D.3    Idier, J.4    Wang, Y.P.5
  • 29
    • 48849102758 scopus 로고    scopus 로고
    • Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples
    • Binder H, Schumacher M. Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples. Stat Appl Genet Mol Biol. 2008; 7(1): 1-28.
    • (2008) Stat Appl Genet Mol Biol , vol.7 , Issue.1 , pp. 1-28
    • Binder, H.1    Schumacher, M.2
  • 31
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010; 33(1): 1-22
    • (2010) J Stat Softw , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 33
    • 84884207090 scopus 로고    scopus 로고
    • Penalized likelihood and Bayesian function selection in regression models
    • Scheipl F, Kneib T, Fahrmeir L. Penalized likelihood and Bayesian function selection in regression models. Advances in Statistical Analysis. 2013; 97(4): 349-385.
    • (2013) Advances in Statistical Analysis , vol.97 , Issue.4 , pp. 349-385
    • Scheipl, F.1    Kneib, T.2    Fahrmeir, L.3
  • 34
    • 77954378998 scopus 로고    scopus 로고
    • Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data
    • Wang Z, Wang C. Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data. Stat Appl Genet Mol Biol. 2010; 9(1): 1-33.
    • (2010) Stat Appl Genet Mol Biol , vol.9 , Issue.1 , pp. 1-33
    • Wang, Z.1    Wang, C.2
  • 35
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman J. Greedy function approximation: a gradient boosting machine. Ann Statist. 2001; 29(5): 1189-1232.
    • (2001) Ann Statist , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 39
    • 79960127235 scopus 로고    scopus 로고
    • Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
    • Fenske N, Kneib T, Hothorn T. Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J Am Stat Assoc. 2011; 106(494): 494-510.
    • (2011) J am Stat Assoc , vol.106 , Issue.494 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 40
    • 28944437658 scopus 로고    scopus 로고
    • Regularized ROC method for disease classification and biomarker selection with microarray data
    • Ma S, Huang J. Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics. 2005; 21(24): 4356-4362.
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 41
    • 55549110371 scopus 로고    scopus 로고
    • Boosting additive models using component-wise P-splines
    • Schmid M, Hothorn T. Boosting additive models using component-wise P-splines. Comput Stat Data Anal. 2008; 53: 298-311.
    • (2008) Comput Stat Data Anal , vol.53 , pp. 298-311
    • Schmid, M.1    Hothorn, T.2
  • 42
    • 84856711914 scopus 로고    scopus 로고
    • Geoadditive expectile regression
    • Sobotka F, Kneib T. Geoadditive expectile regression. Comput Stat Data Anal. 2012; 56: 755-767.
    • (2012) Comput Stat Data Anal , vol.56 , pp. 755-767
    • Sobotka, F.1    Kneib, T.2
  • 43
    • 84953350942 scopus 로고    scopus 로고
    • A unified framework of constrained regression
    • Hofner B, Kneib T, Hothorn T. A unified framework of constrained regression. Stat Comput. 2014; 26(1): 1-14.
    • (2014) Stat Comput , vol.26 , Issue.1 , pp. 1-14
    • Hofner, B.1    Kneib, T.2    Hothorn, T.3
  • 44
    • 66949120727 scopus 로고    scopus 로고
    • Variable Selection and Model Choice in Geoadditive Regression Models
    • Kneib T, Hothorn T, Tutz G. Variable Selection and Model Choice in Geoadditive Regression Models. Biometrics. 2009; 65(2): 626-634.
    • (2009) Biometrics , vol.65 , Issue.2 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 45
    • 33845509035 scopus 로고    scopus 로고
    • Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting
    • Tutz G, Binder H. Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting. Biometrics. 2006;62: 961-971.
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 46
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society (Series B). 2006; 68(1): 49-67.
    • (2006) Journal of the Royal Statistical Society (Series B) , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 48
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Candes E, Tao T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann Statist. 2007; 35(6): 2313-2351.
    • (2007) Ann Statist , vol.35 , Issue.6 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 49
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008; 9(3): 432-441.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 50
    • 79954618626 scopus 로고    scopus 로고
    • Selection of Ordinally Scaled Independent Variables with Applications to International Classification of Functioning Core Sets
    • Gertheiss J, Hogger S, Oberhauser C, Tutz G. Selection of Ordinally Scaled Independent Variables with Applications to International Classification of Functioning Core Sets. Applied Statistics. 2010; 60(3): 377-395.
    • (2010) Applied Statistics , vol.60 , Issue.3 , pp. 377-395
    • Gertheiss, J.1    Hogger, S.2    Oberhauser, C.3    Tutz, G.4
  • 51
    • 77749280569 scopus 로고    scopus 로고
    • Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression
    • Tutz G, Gertheiss J. Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression. J Comput Graph Stat. 2010; 19: 154-174.
    • (2010) J Comput Graph Stat , vol.19 , pp. 154-174
    • Tutz, G.1    Gertheiss, J.2
  • 52
    • 79952327113 scopus 로고    scopus 로고
    • HingeBoost: ROC-Based Boost for Classification and Variable Selection
    • Wang Z. HingeBoost: ROC-Based Boost for Classification and Variable Selection. The International Journal of Biostatistics. 2011; 7(1): 1-30.
    • (2011) The International Journal of Biostatistics , vol.7 , Issue.1 , pp. 1-30
    • Wang, Z.1
  • 53
    • 84914104651 scopus 로고    scopus 로고
    • Extending statistical boosting: An overview of recent methodological developments
    • Mayr A, Binder H, Gefeller O, Schmid M. Extending statistical boosting: an overview of recent methodological developments. Meth Inf Med. 2014; 53(6): 428-435.
    • (2014) Meth Inf Med , vol.53 , Issue.6 , pp. 428-435
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.