-
2
-
-
84925831699
-
Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping
-
D. J. Farris, J. L. Hicks, S. L. Delp, and G. S. Sawicki, "Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping," J. Experimental Biol., vol. 217, pp. 4018-4028, 2014.
-
(2014)
J. Experimental Biol.
, vol.217
, pp. 4018-4028
-
-
Farris, D.J.1
Hicks, J.L.2
Delp, S.L.3
Sawicki, G.S.4
-
3
-
-
84883577529
-
Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping
-
D. J. Farris, B. D. Robertson, and G. S. Sawicki, "Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping," J. Appl. Physiol., vol. 115, pp. 579-585, 2013.
-
(2013)
J. Appl. Physiol.
, vol.115
, pp. 579-585
-
-
Farris, D.J.1
Robertson, B.D.2
Sawicki, G.S.3
-
4
-
-
70249093655
-
Exoskeletons and robotic prosthetics: A review of recent developments
-
R. Bogue, "Exoskeletons and robotic prosthetics: A review of recent developments," Ind. Robot, vol. 36, pp. 421-427, 2009.
-
(2009)
Ind. Robot
, vol.36
, pp. 421-427
-
-
Bogue, R.1
-
5
-
-
0242581240
-
Exoskeletons for human performance augmentation (EHPA): A program summary
-
E. Garcia, J. M. Sater, and J. Main, "Exoskeletons for human performance augmentation (EHPA): A program summary," in J. Robotics Soc. J., 2002, vol. 20, pp. 822-826.
-
(2002)
J. Robotics Soc. J.
, vol.20
, pp. 822-826
-
-
Garcia, E.1
Sater, J.M.2
Main, J.3
-
6
-
-
85008049853
-
The rise of the body bots robotic exoskeletons
-
Jan.
-
E. Guizzo and H. Goldstein, "The rise of the body bots robotic exoskeletons," IEEE Spectrum, vol. 42, no. 1, pp. 50-56, Jan. 2005.
-
(2005)
IEEE Spectrum
, vol.42
, Issue.1
, pp. 50-56
-
-
Guizzo, E.1
Goldstein, H.2
-
7
-
-
33846123645
-
On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX)
-
A. Chu, H. Kazerooni, and A. Zoss, "On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX)," in Proc. IEEE Int. Conf. Robotics and Automation, 2005, pp. 4345-4352.
-
(2005)
Proc. IEEE Int. Conf. Robotics and Automation
, pp. 4345-4352
-
-
Chu, A.1
Kazerooni, H.2
Zoss, A.3
-
8
-
-
33645822543
-
Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)
-
A. B. Zoss, H. Kazerooni, and A. Chu, "Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)," IEEE/ASME Trans. Mechatron., vol. 11, pp. 128-138, 2006.
-
(2006)
IEEE/ASME Trans. Mechatron.
, vol.11
, pp. 128-138
-
-
Zoss, A.B.1
Kazerooni, H.2
Chu, A.3
-
9
-
-
33845728506
-
That which does not stabilize, will only make us stronger
-
H. Kazerooni, A. Chu, and R. Steger, "That which does not stabilize, will only make us stronger," Int. J. Robotics Res., vol. 26, pp. 75-89, 2007.
-
(2007)
Int. J. Robotics Res.
, vol.26
, pp. 75-89
-
-
Kazerooni, H.1
Chu, A.2
Steger, R.3
-
10
-
-
79953141633
-
Exoskeletons for human performance augmentation
-
New York, NY, USA: Springer
-
H. Kazerooni, "Exoskeletons for human performance augmentation," in Handbook of Robotics. New York, NY, USA: Springer, 2008, pp. 773-793.
-
(2008)
Handbook of Robotics
, pp. 773-793
-
-
Kazerooni, H.1
-
11
-
-
2442651384
-
Research robots for applications in artificial intelligence, teleoperation and entertainment
-
S. C. Jacobsen et al., "Research robots for applications in artificial intelligence, teleoperation and entertainment," Int. J. Robotics Res., vol. 23, pp. 319-330, 2004.
-
(2004)
Int. J. Robotics Res.
, vol.23
, pp. 319-330
-
-
Jacobsen, S.C.1
-
12
-
-
85015740645
-
-
Raytheon XOS 2 Exoskeleton, Second-Generation Robotics Suit
-
Raytheon XOS 2 Exoskeleton, Second-Generation Robotics Suit. 2010 Online. Available: http://www.army-technology.com/projects/ raytheon-xos-2-exoskeleton-us/.
-
(2010)
-
-
-
13
-
-
68149149693
-
Exoskeletons and orthoses: Classification, design challenges and future directions
-
H. Herr, "Exoskeletons and orthoses: Classification, design challenges and future directions," J. NeuroEng. Rehabil., vol. 6, p. 21, 2009.
-
(2009)
J. NeuroEng. Rehabil.
, vol.6
, pp. 21
-
-
Herr, H.1
-
14
-
-
40949091084
-
Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art
-
Feb.
-
A. M. Dollar and H. Herr, "Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art," IEEE Trans. Robotics, vol. 24, no. 2, pp. 144-158, Feb. 2008.
-
(2008)
IEEE Trans. Robotics
, vol.24
, Issue.2
, pp. 144-158
-
-
Dollar, A.M.1
Herr, H.2
-
15
-
-
77957240171
-
Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage
-
K. N. Gregorczyk, L. Hasselquist, J. M. Schiffman, C. K. Bensel, J. P. Obusek, and D. J. Gutekunst, "Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage," Ergonomics, vol. 53, pp. 1263-1275, 2010.
-
(2010)
Ergonomics
, vol.53
, pp. 1263-1275
-
-
Gregorczyk, K.N.1
Hasselquist, L.2
Schiffman, J.M.3
Bensel, C.K.4
Obusek, J.P.5
Gutekunst, D.J.6
-
16
-
-
52649148084
-
The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway
-
J. M. Schiffman, K. N. Gregorczyk, C. K. Bensel, L. Hasselquist, and J. P. Obusek, "The effects of a lower body exoskeleton load carriage assistive device on limits of stability and postural sway," Ergonomics, vol. 51, pp. 1515-1529, 2008.
-
(2008)
Ergonomics
, vol.51
, pp. 1515-1529
-
-
Schiffman, J.M.1
Gregorczyk, K.N.2
Bensel, C.K.3
Hasselquist, L.4
Obusek, J.P.5
-
17
-
-
85015773318
-
Meet the exoskeleton the Navy is testing to make sailors stronger
-
D. Lamothe, "Meet the exoskeleton the Navy is testing to make sailors stronger," Washington Post, 2014.
-
(2014)
Washington Post
-
-
Lamothe, D.1
-
18
-
-
85015762878
-
Robotic suit gives shipyard workers super strength
-
H. Hodson, "Robotic suit gives shipyard workers super strength," New Scientist, 2014.
-
(2014)
New Scientist
-
-
Hodson, H.1
-
19
-
-
85015786997
-
-
France's Slender Hercule Exoskeleton is no Lightweight
-
France's Slender Hercule Exoskeleton is no Lightweight 2012 Online. Available: http://www.army-technology.com/features/featurefrench-hercule-robotic-exoskeleton/
-
(2012)
-
-
-
20
-
-
84919673972
-
The body Extender: A full-body exoskeleton for the transport and handling of heavy loads
-
Dec.
-
M. Fontana, R. Vertechy, S. Marcheschi, F. Salsedo, and M. Bergamasco, "The body Extender: A full-body exoskeleton for the transport and handling of heavy loads," IEEE Robotics Automation Mag., vol. 21, no. 4, pp. 34-44, Dec. 2014.
-
(2014)
IEEE Robotics Automation Mag.
, vol.21
, Issue.4
, pp. 34-44
-
-
Fontana, M.1
Vertechy, R.2
Marcheschi, S.3
Salsedo, F.4
Bergamasco, M.5
-
21
-
-
85059500697
-
Comparison of knee and ankle dynamometry between NASA's X1 exoskeleton and biodex system 4
-
K. English et al., "Comparison of knee and ankle dynamometry between NASA's X1 exoskeleton and biodex system 4," NASA Tech. Rep., 2014.
-
(2014)
NASA Tech. Rep.
-
-
English, K.1
-
22
-
-
84884835942
-
X1: A robotic exoskeleton for in-space countermeasures and dynamometry
-
R. Rea, C. Beck, R. Rovekamp, M. Diftler, and P. Neuhaus, "X1: A robotic exoskeleton for in-space countermeasures and dynamometry," in Proc. AIAA SPACE Conf. Exposition, 2013.
-
(2013)
Proc. AIAA SPACE Conf. Exposition
-
-
Rea, R.1
Beck, C.2
Rovekamp, R.3
Diftler, M.4
Neuhaus, P.5
-
23
-
-
84919649737
-
Stronger, smarter, softer: Next-generation wearable robots
-
Dec.
-
A. Asbeck, S. D. Rossi, I. Galiana, Y. Ding, and C. Walsh, "Stronger, smarter, softer: Next-generation wearable robots," IEEE Robotics Automation Mag., vol. 21, pp. 22-33, Dec. 2014.
-
(2014)
IEEE Robotics Automation Mag.
, vol.21
, pp. 22-33
-
-
Asbeck, A.1
Rossi, S.D.2
Galiana, I.3
Ding, Y.4
Walsh, C.5
-
24
-
-
84891074688
-
Biologically-inspired soft exosuit
-
A. T. Asbeck, R. J. Dyer, A. F. Larusson, and C. J. Walsh, "Biologically-inspired soft exosuit," in Proc. IEEE Int. Conf. Rehabilitation Robotics, 2013, pp. 1-8.
-
(2013)
Proc. IEEE Int. Conf. Rehabilitation Robotics
, pp. 1-8
-
-
Asbeck, A.T.1
Dyer, R.J.2
Larusson, A.F.3
Walsh, C.J.4
-
25
-
-
1542723639
-
Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait
-
Jan.
-
J. A. Blaya and H. Herr, "Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 12, no. , pp. 24-31, Jan. 2004.
-
(2004)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.12
, pp. 24-31
-
-
Blaya, J.A.1
Herr, H.2
-
26
-
-
84859737017
-
Review of control algorithms for robotic ankle system: In lower-limb orthoses, prostheses, and exoskeletons
-
R. Jimenez-Fabian and O. Verlinden, "Review of control algorithms for robotic ankle system: In lower-limb orthoses, prostheses, and exoskeletons," Medical Eng. Phys., vol. 34, pp. 397-408, 2012.
-
(2012)
Medical Eng. Phys.
, vol.34
, pp. 397-408
-
-
Jimenez-Fabian, R.1
Verlinden, O.2
-
27
-
-
58549116480
-
Motor adaptation during dorsiflexion-assisted walking with a powered orthosis
-
P.-C. Kao and D. P. Ferris, "Motor adaptation during dorsiflexion-assisted walking with a powered orthosis," Gait Posture, vol. 29, pp. 230-236, 2009.
-
(2009)
Gait Posture
, vol.29
, pp. 230-236
-
-
Kao, P.-C.1
Ferris, D.P.2
-
28
-
-
51649115384
-
Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO)
-
A. W. Boehler, K. W. Hollander, T. G. Sugar, and D. Shin, "Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO)," in Proc. IEEE Int. Conf. Robotics and Automation, 2008, pp. 2025-2030.
-
(2008)
Proc. IEEE Int. Conf. Robotics and Automation
, pp. 2025-2030
-
-
Boehler, A.W.1
Hollander, K.W.2
Sugar, T.G.3
Shin, D.4
-
29
-
-
84867971686
-
A powered ankle-foot orthoses for ankle rehabilitation
-
Y. Bai, F. Li, J. Zhao, J. Li, F. Jin, and X. Gao, "A powered ankle-foot orthoses for ankle rehabilitation," in Proc. IEEE Int. Conf. Automation and Logistics, 2012, pp. 288-293.
-
(2012)
Proc. IEEE Int. Conf. Automation and Logistics
, pp. 288-293
-
-
Bai, Y.1
Li, F.2
Zhao, J.3
Li, J.4
Jin, F.5
Gao, X.6
-
30
-
-
36549084566
-
Design of a novel two degree-of-freedom ankle-foot orthosis
-
A. Agrawal, V. Sangwan, S. K. Banala, S. K. Agrawal, and S. A. Binder-Macleod, "Design of a novel two degree-of-freedom ankle-foot orthosis," J. Mechanical Design, vol. 129, pp. 1137-1143, 2007.
-
(2007)
J. Mechanical Design
, vol.129
, pp. 1137-1143
-
-
Agrawal, A.1
Sangwan, V.2
Banala, S.K.3
Agrawal, S.K.4
Binder-Macleod, S.A.5
-
31
-
-
33646156199
-
An improved powered ankle-foot orthosis using proportional myoelectric control
-
Jun.
-
D. P. Ferris, K. E. Gordon, G. S. Sawicki, and A. Peethambaran, "An improved powered ankle-foot orthosis using proportional myoelectric control," Gait Posture, vol. 23, pp. 425-428, Jun. 2006.
-
(2006)
Gait Posture
, vol.23
, pp. 425-428
-
-
Ferris, D.P.1
Gordon, K.E.2
Sawicki, G.S.3
Peethambaran, A.4
-
32
-
-
33745366113
-
Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis
-
K. E. Gordon, G. S. Sawicki, and D. P. Ferris, "Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis," J. Biomechanics, vol. 39, pp. 1832-1841, 2006.
-
(2006)
J. Biomechanics
, vol.39
, pp. 1832-1841
-
-
Gordon, K.E.1
Sawicki, G.S.2
Ferris, D.P.3
-
33
-
-
18744416003
-
An ankle-foot orthosis powered by artificial pneumatic muscles
-
May
-
D. P. Ferris, J. M. Czerniecki, and B. Hannaford, "An ankle-foot orthosis powered by artificial pneumatic muscles," J. Appl. Biomechanics, vol. 21, pp. 189-197, May 2005.
-
(2005)
J. Appl. Biomechanics
, vol.21
, pp. 189-197
-
-
Ferris, D.P.1
Czerniecki, J.M.2
Hannaford, B.3
-
34
-
-
79957862497
-
A portable powered ankle-foot orthosis for rehabilitation
-
K. A. Shorter, G. F. Kogler, E. Loth, W. K. Durfee, and E. T. Hsiao-Wecksler, "A portable powered ankle-foot orthosis for rehabilitation," J. Rehabil. Res. Develop., vol. 48, pp. 459-472, 2011.
-
(2011)
J. Rehabil. Res. Develop.
, vol.48
, pp. 459-472
-
-
Shorter, K.A.1
Kogler, G.F.2
Loth, E.3
Durfee, W.K.4
Hsiao-Wecksler, E.T.5
-
35
-
-
34547777922
-
Learning to walk with a robotic ankle exoskeleton
-
K. E. Gordon and D. P. Ferris, "Learning to walk with a robotic ankle exoskeleton," J. Biomechanics, vol. 40, pp. 2636-2644, 2007.
-
(2007)
J. Biomechanics
, vol.40
, pp. 2636-2644
-
-
Gordon, K.E.1
Ferris, D.P.2
-
36
-
-
46849086771
-
Mechanics and energetics of level walking with powered ankle exoskeletons
-
May
-
G. S. Sawicki and D. P. Ferris, "Mechanics and energetics of level walking with powered ankle exoskeletons," J. Experimental Biol., vol. 211, pp. 1402-1413, May 2008.
-
(2008)
J. Experimental Biol.
, vol.211
, pp. 1402-1413
-
-
Sawicki, G.S.1
Ferris, D.P.2
-
37
-
-
58149216357
-
Mechanics and energetics of incline walking with robotic ankle exoskeletons
-
Jan.
-
G. S. Sawicki and D. P. Ferris, "Mechanics and energetics of incline walking with robotic ankle exoskeletons," J. Experimental Biol., vol. 212, pp. 32-41, Jan. 2009.
-
(2009)
J. Experimental Biol.
, vol.212
, pp. 32-41
-
-
Sawicki, G.S.1
Ferris, D.P.2
-
38
-
-
84901689431
-
Autonomous exoskeleton reduces metabolic cost of human walking during load carriage
-
L. Mooney, E. Rouse, and H. Herr, "Autonomous exoskeleton reduces metabolic cost of human walking during load carriage," J. NeuroEng. Rehabil., vol. 11, p. 80, 2014.
-
(2014)
J. NeuroEng. Rehabil.
, vol.11
, pp. 80
-
-
Mooney, L.1
Rouse, E.2
Herr, H.3
-
39
-
-
84930943586
-
Reducing the energy cost of human walking using an unpowered exoskeleton
-
S. H. Collins, M. B. Wiggin, and G. S. Sawicki, "Reducing the energy cost of human walking using an unpowered exoskeleton," Nature, 2015.
-
(2015)
Nature
-
-
Collins, S.H.1
Wiggin, M.B.2
Sawicki, G.S.3
-
40
-
-
84891141532
-
The biomechanics and energetics of human running using an elastic knee exoskeleton
-
G. Elliott, G. S. Sawicki, A. Marecki, and H. Herr, "The biomechanics and energetics of human running using an elastic knee exoskeleton," in Proc. IEEE Conf. Rehabilitation Robotics, 2013.
-
(2013)
Proc. IEEE Conf. Rehabilitation Robotics
-
-
Elliott, G.1
Sawicki, G.S.2
Marecki, A.3
Herr, H.4
-
41
-
-
82155184278
-
An elastic exoskeleton for assisting human running
-
M. S. Cherry, S. Kota, and D. P. Ferris, "An elastic exoskeleton for assisting human running," in Proc. ASME Int. Design Eng. Technical Conf. Comput. and Inform. Eng. Conf., 2009, pp. 727-738.
-
(2009)
Proc. ASME Int. Design Eng. Technical Conf. Comput. and Inform. Eng. Conf.
, pp. 727-738
-
-
Cherry, M.S.1
Kota, S.2
Ferris, D.P.3
-
42
-
-
85015809827
-
Running with an elastic lower limb exoskeleton
-
M. Cherry, S. Kota, A. Young, and D. Ferris, "Running with an elastic lower limb exoskeleton," J. Appl. Biomechanics, 2015.
-
(2015)
J. Appl. Biomechanics
-
-
Cherry, M.1
Kota, S.2
Young, A.3
Ferris, D.4
-
43
-
-
84858983844
-
Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study
-
G. Zeilig, H. Weingarden, M. Zwecker, I. Dudkiewicz, A. Bloch, and A. Esquenazi, "Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study," J. Spinal Cord Medicine, vol. 35, pp. 101-196, 2012.
-
(2012)
J. Spinal Cord Medicine
, vol.35
, pp. 101-196
-
-
Zeilig, G.1
Weingarden, H.2
Zwecker, M.3
Dudkiewicz, I.4
Bloch, A.5
Esquenazi, A.6
-
44
-
-
84983146009
-
New bipedal locomotion option for individuals with thoracic level motor complete spinal cord injury
-
A. Esquenazi, "New bipedal locomotion option for individuals with thoracic level motor complete spinal cord injury," J. Spinal Res. Found., vol. 8, pp. 26-28, 2013.
-
(2013)
J. Spinal Res. Found.
, vol.8
, pp. 26-28
-
-
Esquenazi, A.1
-
45
-
-
84880833180
-
Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia
-
D. B. Fineberg et al., "Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia," J. Spinal Cord Medicine, vol. 36, pp. 313-321, 2013.
-
(2013)
J. Spinal Cord Medicine
, vol.36
, pp. 313-321
-
-
Fineberg, D.B.1
-
46
-
-
84871909019
-
The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
-
A. Esquenazi, M. Talaty, A. Packel, and M. Saulino, "The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury," Amer. J. Physical Medicine Rehabil., vol. 91, pp. 911-921, 2012.
-
(2012)
Amer. J. Physical Medicine Rehabil.
, vol.91
, pp. 911-921
-
-
Esquenazi, A.1
Talaty, M.2
Packel, A.3
Saulino, M.4
-
47
-
-
80053365704
-
Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: A preliminary report
-
S. Maeshima et al., "Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: A preliminary report," BMC Neurol., vol. 11, p. 116, 2011.
-
(2011)
BMC Neurol.
, vol.11
, pp. 116
-
-
Maeshima, S.1
-
48
-
-
84903575027
-
Gait training early after stroke with a new exoskeleton-the hybrid assistive limb: A study of safety and feasibility
-
A. Nilsson, K. S. Vreede, V. Haglund, H. Kawamoto, Y. Sankai, and J. Borg, "Gait training early after stroke with a new exoskeleton-the hybrid assistive limb: A study of safety and feasibility," J. NeuroEng. Rehabil., vol. 11, p. 92, 2014.
-
(2014)
J. NeuroEng. Rehabil.
, vol.11
, pp. 92
-
-
Nilsson, A.1
Vreede, K.S.2
Haglund, V.3
Kawamoto, H.4
Sankai, Y.5
Borg, J.6
-
49
-
-
84977551667
-
Neurorehabilitation in chronic paraplegic patients with the HAL® exoskeleton-preliminary electrophysiological and fMRI data of a pilot study
-
New York, NY, USA: Springer
-
M. Sczesny-Kaiser et al., "Neurorehabilitation in chronic paraplegic patients with the HAL® exoskeleton-preliminary electrophysiological and fMRI data of a pilot study," in Converging Clinical and Engineering Research on Neurorehabilitation. New York, NY, USA: Springer, 2013, pp. 611-615.
-
(2013)
Converging Clinical and Engineering Research on Neurorehabilitation
, pp. 611-615
-
-
Sczesny-Kaiser, M.1
-
50
-
-
84977535294
-
Exoskeletal neuro-rehabilitation in chronic paraplegic patients-initial results
-
New York, NY, USA: Springer
-
M. Aach et al., "Exoskeletal neuro-rehabilitation in chronic paraplegic patients-initial results," in Converging Clinical and Engineering Research on Neurorehabilitation. New York, NY, USA: Springer, 2013, pp. 233-236.
-
(2013)
Converging Clinical and Engineering Research on Neurorehabilitation
, pp. 233-236
-
-
Aach, M.1
-
51
-
-
84919333494
-
Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury-A pilot study
-
M. Aach et al., "Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury-A pilot study," Spine J., 2014.
-
(2014)
Spine J.
-
-
Aach, M.1
-
52
-
-
84937420456
-
Power assist system HAL-3 for gait disorder person
-
New York, NY, USA: Springer
-
H. Kawamoto and Y. Sankai, "Power assist system HAL-3 for gait disorder person," in Computers Helping People with Special Needs. New York, NY, USA: Springer, 2002, pp. 196-203.
-
(2002)
Computers Helping People with Special Needs
, pp. 196-203
-
-
Kawamoto, H.1
Sankai, Y.2
-
53
-
-
0242492035
-
Power assist method for HAL-3 using EMG-based feedback controller
-
H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai, "Power assist method for HAL-3 using EMG-based feedback controller," in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, 2003, pp. 1648-1653.
-
(2003)
Proc. IEEE Int. Conf. Systems, Man and Cybernetics
, pp. 1648-1653
-
-
Kawamoto, H.1
Lee, S.2
Kanbe, S.3
Sankai, Y.4
-
54
-
-
24344467912
-
Power assist method based on phase sequence and muscle force condition for HAL
-
H. Kawamoto and Y. Sankai, "Power assist method based on phase sequence and muscle force condition for HAL," Advanced Robotics, vol. 19, pp. 717-734, 2005.
-
(2005)
Advanced Robotics
, vol.19
, pp. 717-734
-
-
Kawamoto, H.1
Sankai, Y.2
-
55
-
-
84922706489
-
Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury
-
S. A. Kolakowsky-Hayner, J. Crew, S. Moran, and A. Shah, "Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury," J. Spine, 2013.
-
(2013)
J. Spine
-
-
Kolakowsky-Hayner, S.A.1
Crew, J.2
Moran, S.3
Shah, A.4
-
56
-
-
73149125749
-
In quest of mobility-Honda to develop walking assist devices
-
Y. Kusuda, "In quest of mobility-Honda to develop walking assist devices," Industrial Robot: Int. J., vol. 36, pp. 537-539, 2009.
-
(2009)
Industrial Robot: Int. J.
, vol.36
, pp. 537-539
-
-
Kusuda, Y.1
-
57
-
-
84939546008
-
Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial
-
C. Buesing et al., "Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial," J. NeuroEng. Rehabil., vol. 12, p. 1, 2015.
-
(2015)
J. NeuroEng. Rehabil.
, vol.12
, pp. 1
-
-
Buesing, C.1
-
58
-
-
83455220178
-
Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals
-
Jul.
-
R. J. Farris, H. A. Quintero, and M. Goldfarb, "Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 4, pp. 652-659, Jul. 2011.
-
(2011)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.19
, Issue.4
, pp. 652-659
-
-
Farris, R.J.1
Quintero, H.A.2
Goldfarb, M.3
-
59
-
-
84867304119
-
A method for the autonomous control of lower limb exoskeletons for persons with paraplegia
-
H. A. Quintero, R. J. Farris, and M. Goldfarb, "A method for the autonomous control of lower limb exoskeletons for persons with paraplegia," J. Medical Devices, vol. 6, p. 041003, 2012.
-
(2012)
J. Medical Devices
, vol.6
, pp. 041003
-
-
Quintero, H.A.1
Farris, R.J.2
Goldfarb, M.3
-
60
-
-
84899454867
-
Toward exoskeleton control based on steady state visual evoked potentials
-
N.-S. Kwak, K.-R. Muller, and S.-W. Lee, "Toward exoskeleton control based on steady state visual evoked potentials," in Proc. Int. Winter Workshop Brain-Comput. Interface, 2014, pp. 1-2.
-
(2014)
Proc. Int. Winter Workshop Brain-Comput. Interface
, pp. 1-2
-
-
Kwak, N.-S.1
Muller, K.-R.2
Lee, S.-W.3
-
61
-
-
84886508188
-
High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton
-
A. Kilicarslan, S. Prasad, R. G. Grossman, and J. L. Contreras-Vidal, "High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton," in Proc. Int. Conf. IEEE Eng. in Medicine and Biology Soc., 2013, pp. 5606-5609.
-
(2013)
Proc. Int. Conf. IEEE Eng. in Medicine and Biology Soc.
, pp. 5606-5609
-
-
Kilicarslan, A.1
Prasad, S.2
Grossman, R.G.3
Contreras-Vidal, J.L.4
-
62
-
-
84867426965
-
MINDWALKER: Going one step further with assistive lower limbs exoskeleton for SCI condition subjects
-
J. Gancet et al., "MINDWALKER: Going one step further with assistive lower limbs exoskeleton for SCI condition subjects," in Proc. RAS EMBS Int. Conf. Biomedical Robotics and Biomechatronics, 2012, pp. 1794-1800.
-
(2012)
Proc. RAS EMBS Int. Conf. Biomedical Robotics and Biomechatronics
, pp. 1794-1800
-
-
Gancet, J.1
-
63
-
-
84893743570
-
Actively controlled lateral gait assistance in a lower limb exoskeleton
-
L. Wang, S. Wang, E. H. V. Asseldonk, and H. V. d. Kooij, "Actively controlled lateral gait assistance in a lower limb exoskeleton," in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst., 2013, pp. 965-970.
-
(2013)
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst.
, pp. 965-970
-
-
Wang, L.1
Wang, S.2
Asseldonk, E.H.V.3
Kooij, H.V.D.4
-
64
-
-
84902590669
-
EMG patterns during assisted walking in the exoskeleton
-
F. Sylos-Labini et al., "EMG patterns during assisted walking in the exoskeleton," Front. Human Neurosci., vol. 8, 2014.
-
(2014)
Front. Human Neurosci.
, vol.8
-
-
Sylos-Labini, F.1
-
65
-
-
0033937419
-
Walking after stroke: Does it matter? Changes in bone mineral density within the first months after stroke. A longitudinal study
-
L. Jorgensen, B. Jacobsen, T. Wilsgaard, and J. Magnus, "Walking after stroke: Does it matter? changes in bone mineral density within the first months after stroke. A longitudinal study". Osteoporosis Int., 11, 381-387. 2000.
-
(2000)
Osteoporosis Int.
, vol.11
, pp. 381-387
-
-
Jorgensen, L.1
Jacobsen, B.2
Wilsgaard, T.3
Magnus, J.4
-
66
-
-
84865593677
-
Locomotor training: As a treatment of spinal cord injury and in the progression of neurologic rehabilitation
-
Sep.
-
S. J. Harkema, J. Hillyer, M. Schmidt-Read, E. Ardolino, S. A. Sisto, and A. L. Behrman, "Locomotor training: As a treatment of spinal cord injury and in the progression of neurologic rehabilitation," Arch. Physical Medicine Rehabil., vol. 93, pp. 1588-1597, Sep. 2012.
-
(2012)
Arch. Physical Medicine Rehabil.
, vol.93
, pp. 1588-1597
-
-
Harkema, S.J.1
Hillyer, J.2
Schmidt-Read, M.3
Ardolino, E.4
Sisto, S.A.5
Behrman, A.L.6
-
67
-
-
84904384570
-
A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy
-
G. Chen, C. K. Chan, Z. Guo, and H. Yu, "A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy," Critical Rev. Biomed. Eng., vol. 41, pp. 343-363, 2013.
-
(2013)
Critical Rev. Biomed. Eng.
, vol.41
, pp. 343-363
-
-
Chen, G.1
Chan, C.K.2
Guo, Z.3
Yu, H.4
-
68
-
-
77950971068
-
A bio-robotic leg orthosis for rehabilitation and mobility enhancement
-
R. W. Horst, "A bio-robotic leg orthosis for rehabilitation and mobility enhancement," in Proc. Int. Conf. IEEE Eng. in Medicine and Biology Soc., 2009, pp. 5030-5033.
-
(2009)
Proc. Int. Conf. IEEE Eng. in Medicine and Biology Soc.
, pp. 5030-5033
-
-
Horst, R.W.1
-
69
-
-
84908249581
-
Modification of lower extremity kinetic symmetry during sit-to-stand transfers using a robotic leg orthosis with individuals post-stroke
-
New York, NY, USA: Springer
-
J. G. Vose, A. McCarthy, E. Tacdol, and R. W. Horst, "Modification of lower extremity kinetic symmetry during sit-to-stand transfers using a robotic leg orthosis with individuals post-stroke," in Converging Clinical and Engineering Research on Neurorehabilitation. New York, NY, USA: Springer, 2013, pp. 811-814.
-
(2013)
Converging Clinical and Engineering Research on Neurorehabilitation
, pp. 811-814
-
-
Vose, J.G.1
McCarthy, A.2
Tacdol, E.3
Horst, R.W.4
-
70
-
-
85015805707
-
Optimization of lower extremity kinetics during transfers using a wearable, portable robotic lower extremity orthosis: A case study
-
New York, NY, USA: Springer
-
J. G. Vose, A. McCarthy, E. Tacdol, and R. W. Horst, "Optimization of lower extremity kinetics during transfers using a wearable, portable robotic lower extremity orthosis: A case study," in Converging Clinical and Engineering Research on Neurorehabilitation. New York, NY, USA: Springer, 2013, pp. 99-102.
-
(2013)
Converging Clinical and Engineering Research on Neurorehabilitation
, pp. 99-102
-
-
Vose, J.G.1
McCarthy, A.2
Tacdol, E.3
Horst, R.W.4
-
71
-
-
84864593072
-
Mobility training using a bionic knee orthosis in patients in a post-stroke chronic state: A case series
-
N. N. Byl, "Mobility training using a bionic knee orthosis in patients in a post-stroke chronic state: A case series," J. Medical Case Rep., vol. 6, p. 216, 2012.
-
(2012)
J. Medical Case Rep.
, vol.6
, pp. 216
-
-
Byl, N.N.1
-
72
-
-
84862595871
-
A wearable robotic knee orthosis for gait training: A case-series of hemiparetic stroke survivors
-
C. K. Wong, L. Bishop, and J. Stein, "A wearable robotic knee orthosis for gait training: A case-series of hemiparetic stroke survivors," Prosthetics Orthotics Int., vol. 36, pp. 113-120, 2012.
-
(2012)
Prosthetics Orthotics Int.
, vol.36
, pp. 113-120
-
-
Wong, C.K.1
Bishop, L.2
Stein, J.3
-
73
-
-
85015733310
-
Effects of 'intention-based' robotic exoskeleton on muscle activation patterns during overground walking
-
New York, NY, USA: Springer
-
C. Patten, T. E. McGuirk, and S. Patil, "Effects of 'intention-based' robotic exoskeleton on muscle activation patterns during overground walking," in Converging Clinical and Engineering Research on Neurorehabilitation. New York, NY, USA: Springer, 2013, pp. 109-113.
-
(2013)
Converging Clinical and Engineering Research on Neurorehabilitation
, pp. 109-113
-
-
Patten, C.1
McGuirk, T.E.2
Patil, S.3
-
75
-
-
0015984264
-
Development of active anthropomorphic exoskeletons
-
M. Vukobratovic, D. Hristic, and Z. Stojiljkovic, "Development of active anthropomorphic exoskeletons," Medical Biological Eng., vol. 12, pp. 66-80, 1974.
-
(1974)
Medical Biological Eng.
, vol.12
, pp. 66-80
-
-
Vukobratovic, M.1
Hristic, D.2
Stojiljkovic, Z.3
-
76
-
-
0036277374
-
Series elastic actuators for high fidelity force control
-
J. Pratt, B. Krupp, and C. Morse, "Series elastic actuators for high fidelity force control," Industrial Robot: Int. J., vol. 29, pp. 234-241, 2002.
-
(2002)
Industrial Robot: Int. J.
, vol.29
, pp. 234-241
-
-
Pratt, J.1
Krupp, B.2
Morse, C.3
-
77
-
-
0000719820
-
A comparative analysis of actuator technologies for robotics
-
Cambridge, MA, USA: MIT Press
-
J. M. Hollerbach, I. W. Hunter, and J. Ballantyne, "A comparative analysis of actuator technologies for robotics," in Robotics Review 2. Cambridge, MA, USA: MIT Press, 1991, pp. 299-342.
-
(1991)
Robotics Review
, vol.2
, pp. 299-342
-
-
Hollerbach, J.M.1
Hunter, I.W.2
Ballantyne, J.3
-
78
-
-
84924139082
-
Control strategies for active lower extremity prosthetics and orthotics: A review
-
M. R. Tucker et al., "Control strategies for active lower extremity prosthetics and orthotics: A review," J. NeuroEng. Rehabil., vol. 12, p. 1, 2015.
-
(2015)
J. NeuroEng. Rehabil.
, vol.12
, pp. 1
-
-
Tucker, M.R.1
-
79
-
-
84919647845
-
XPED2: A passive exoskeleton with artificial tendons
-
Dec.
-
W. v. Dijk and H. V. d. Kooij, "XPED2: A passive exoskeleton with artificial tendons," IEEE Robotics Automation Mag., vol. 21, no. 4, pp. 56-61, Dec. 2014.
-
(2014)
IEEE Robotics Automation Mag.
, vol.21
, Issue.4
, pp. 56-61
-
-
Dijk, W.V.1
Kooij, H.V.D.2
-
80
-
-
3042651109
-
Exotendons for assistance of human locomotion
-
A. J. V. d. Bogert, "Exotendons for assistance of human locomotion," Biomedical Eng. Online, vol. 2, pp. 1-8, 2003.
-
(2003)
Biomedical Eng. Online
, vol.2
, pp. 1-8
-
-
Bogert, A.J.V.D.1
-
81
-
-
48349104451
-
Control of a regenerative braking powered ankle foot orthosis
-
A. M. Oymagil, J. K. Hitt, T. Sugar, and J. Fleeger, "Control of a regenerative braking powered ankle foot orthosis," in Proc. IEEE Int. Conf. Rehabilitation Robotics, 2007, pp. 28-34.
-
(2007)
Proc. IEEE Int. Conf. Rehabilitation Robotics
, pp. 28-34
-
-
Oymagil, A.M.1
Hitt, J.K.2
Sugar, T.3
Fleeger, J.4
-
82
-
-
84926163555
-
Review of assistive strategies in powered lower-limb orthoses and exoskeletons
-
T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, "Review of assistive strategies in powered lower-limb orthoses and exoskeletons," Robotics Autonomous Syst., vol. 64, pp. 120-136, 2015.
-
(2015)
Robotics Autonomous Syst.
, vol.64
, pp. 120-136
-
-
Yan, T.1
Cempini, M.2
Oddo, C.M.3
Vitiello, N.4
-
83
-
-
85009260434
-
A novel low-density, high-hardness, high-entropy alloy with closepacked single-phase nanocrystalline structures
-
K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, and C. C. Koch, "A novel low-density, high-hardness, high-entropy alloy with closepacked single-phase nanocrystalline structures," Materials Res. Lett., vol. 3, pp. 95-99, 2015.
-
(2015)
Materials Res. Lett.
, vol.3
, pp. 95-99
-
-
Youssef, K.M.1
Zaddach, A.J.2
Niu, C.3
Irving, D.L.4
Koch, C.C.5
-
85
-
-
60549108959
-
Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording
-
Mar.
-
R. F. Weir, P. R. Troyk, G. A. DeMichele, D. A. Kerns, J. F. Schorsch, and H. Maas, "Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording," IEEE Trans. Biomed. Eng., vol. 56, no. 2, pp. 159-171, Mar. 2009.
-
(2009)
IEEE Trans. Biomed. Eng.
, vol.56
, Issue.2
, pp. 159-171
-
-
Weir, R.F.1
Troyk, P.R.2
DeMichele, G.A.3
Kerns, D.A.4
Schorsch, J.F.5
Maas, H.6
-
87
-
-
77949422852
-
Double nerve intraneural interface implant on a human amputee for robotic hand control
-
P. M. Rossini et al., "Double nerve intraneural interface implant on a human amputee for robotic hand control," Clin. Neurophysiol., vol. 121, pp. 777-783, 2010.
-
(2010)
Clin. Neurophysiol.
, vol.121
, pp. 777-783
-
-
Rossini, P.M.1
-
88
-
-
80051607518
-
Epidermal electronics
-
D.-H. Kim et al., "Epidermal electronics," Science, vol. 333, pp. 838-843, 2011.
-
(2011)
Science
, vol.333
, pp. 838-843
-
-
Kim, D.-H.1
-
89
-
-
0003557270
-
-
Stamford CT USA: Cengage Learning
-
M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision. Stamford, CT, USA: Cengage Learning, 2014.
-
(2014)
Image Processing Analysis, Machine Vision
-
-
Sonka, M.1
Hlavac, V.2
Boyle, R.3
-
90
-
-
0032313015
-
Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motion in the real world
-
S. Miyakoshi, G. Taga, Y. Kuniyoshi, and A. Nagakubo, "Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motion in the real world," in Proc Int. Conf. Intelligent Robots Syst., 1998, pp. 84-89.
-
(1998)
Proc Int. Conf. Intelligent Robots Syst.
, pp. 84-89
-
-
Miyakoshi, S.1
Taga, G.2
Kuniyoshi, Y.3
Nagakubo, A.4
-
91
-
-
0026045478
-
Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment
-
G. Taga, Y. Yamaguchi, and H. Shimizu, "Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment," Biological Cybern., vol. 65, pp. 147-159, 1991.
-
(1991)
Biological Cybern.
, vol.65
, pp. 147-159
-
-
Taga, G.1
Yamaguchi, Y.2
Shimizu, H.3
-
92
-
-
79955900349
-
Entrainment to natural oscillations via uncoupled central pattern generators
-
Jun.
-
Y. Futakata and T. Iwasaki, "Entrainment to natural oscillations via uncoupled central pattern generators," IEEE Trans. Automat. Contr., vol. 56, no. 6, pp. 1075-1089, Jun. 2011.
-
(2011)
IEEE Trans. Automat. Contr.
, vol.56
, Issue.6
, pp. 1075-1089
-
-
Futakata, Y.1
Iwasaki, T.2
-
93
-
-
79251603322
-
Human-robot synchrony: Flexible assistance using adaptive oscillators
-
Apr.
-
R. Ronsse, N. Vitiello, T. Lenzi, J. v. d. Kieboom, M. C. Carrozza, and A. J. Ijspeert, "Human-robot synchrony: Flexible assistance using adaptive oscillators," IEEE Trans. Biomed. Eng., vol. 58, no. 4, pp. 1001-1012, Apr. 2011.
-
(2011)
IEEE Trans. Biomed. Eng.
, vol.58
, Issue.4
, pp. 1001-1012
-
-
Ronsse, R.1
Vitiello, N.2
Lenzi, T.3
Kieboom, J.V.D.4
Carrozza, M.C.5
Ijspeert, A.J.6
-
94
-
-
84855992380
-
Oscillator-based assistance of cyclical movements: Model-based and model-free approaches
-
Oct.
-
R. Ronsse et al., "Oscillator-based assistance of cyclical movements: Model-based and model-free approaches," Medical Biological Eng. Computing, vol. 49, pp. 1173-1185, Oct. 2011.
-
(2011)
Medical Biological Eng. Computing
, vol.49
, pp. 1173-1185
-
-
Ronsse, R.1
-
95
-
-
84946100986
-
A light-weight active orthosis for hip movement assistance
-
F. Giovacchini et al., "A light-weight active orthosis for hip movement assistance," Robotics Autonomous Syst., 2014.
-
(2014)
Robotics Autonomous Syst.
-
-
Giovacchini, F.1
-
96
-
-
84888123227
-
Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking
-
Sep.
-
T. Lenzi, M. C. Carrozza, and S. K. Agrawal, "Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 5, pp. 938-948, Sep. 2013.
-
(2013)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.21
, Issue.5
, pp. 938-948
-
-
Lenzi, T.1
Carrozza, M.C.2
Agrawal, S.K.3
-
97
-
-
84855520442
-
The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking
-
M. D. Lewek, A. J. Osborn, and C. J. Wutzke, "The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking," Arch. Phys. Medicine Rehabil., vol. 93, pp. 123-128, 2012.
-
(2012)
Arch. Phys. Medicine Rehabil.
, vol.93
, pp. 123-128
-
-
Lewek, M.D.1
Osborn, A.J.2
Wutzke, C.J.3
-
98
-
-
34548075881
-
Biomechanical and energetic effects of a stance-control orthotic knee joint
-
A. Zissimopoulos, S. Fatone, and S. A. Gard, "Biomechanical and energetic effects of a stance-control orthotic knee joint," J. Rehabil. Res. Develop., vol. 44, pp. 503-514, 2007.
-
(2007)
J. Rehabil. Res. Develop.
, vol.44
, pp. 503-514
-
-
Zissimopoulos, A.1
Fatone, S.2
Gard, S.A.3
-
99
-
-
0034853395
-
Energy consumption during level walking with arm and knee immobilized
-
E. Hanada and D. C. Kerrigan, "Energy consumption during level walking with arm and knee immobilized," Arch. Phys. Medicine Rehabil., vol. 82, pp. 1251-1254, 2001.
-
(2001)
Arch. Phys. Medicine Rehabil.
, vol.82
, pp. 1251-1254
-
-
Hanada, E.1
Kerrigan, D.C.2
-
100
-
-
0031441894
-
Effects of restricted knee flexion and walking speed on the vertical ground reaction force during gait
-
T. M. Cook, K. P. Farrell, I. A. Carey, J. M. Gibbs, and G. E. Wiger, "Effects of restricted knee flexion and walking speed on the vertical ground reaction force during gait," J. Orthopaedic Sports Phys. Therapy, vol. 25, pp. 236-244, 1997.
-
(1997)
J. Orthopaedic Sports Phys. Therapy
, vol.25
, pp. 236-244
-
-
Cook, T.M.1
Farrell, K.P.2
Carey, I.A.3
Gibbs, J.M.4
Wiger, G.E.5
-
101
-
-
84864476582
-
Degrees-of-freedom of a robotic exoskeleton and human adaptation to new gait templates
-
P. Stegall, K. N. Winfree, and S. K. Agrawal, "Degrees-of-freedom of a robotic exoskeleton and human adaptation to new gait templates," in Proc. IEEE Int. Conf. Robotics and Automation, 2012, pp. 4986-4991.
-
(2012)
Proc. IEEE Int. Conf. Robotics and Automation
, pp. 4986-4991
-
-
Stegall, P.1
Winfree, K.N.2
Agrawal, S.K.3
-
102
-
-
85015766023
-
Honda walking assist device goes into broad hospital trial
-
C. Davies, "Honda Walking Assist Device Goes Into Broad Hospital Trial," Slash Gear, 2013 Online. Available: www.slashgear.com/ honda-walking-assist-device-goes-into-broad-hospital-trial-29284034
-
(2013)
Slash Gear
-
-
Davies, C.1
-
103
-
-
85015806332
-
New competition launched in develop: U.S. Military's Iron Man suit
-
D. Lamothe, "New competition launched in develop: U.S. military's 'Iron Man' suit," Washington Post, 2014.
-
(2014)
Washington Post
-
-
Lamothe, D.1
-
104
-
-
85015727998
-
-
AUSA-Revision 2013 Online. Available: http://soldiersystems.net/ tag/revision/
-
(2013)
AUSA-Revision
-
-
-
105
-
-
84892370470
-
Wearable motion sensors to continuously measure real-world physical activities
-
B. H. Dobkin, "Wearable motion sensors to continuously measure real-world physical activities," Current Opinion Neurol., vol. 26, pp. 602-608, 2013.
-
(2013)
Current Opinion Neurol.
, vol.26
, pp. 602-608
-
-
Dobkin, B.H.1
-
106
-
-
77955809093
-
Autonomous helicopter aerobatics through apprenticeship learning
-
P. Abbeel, A. Coates, and A. Y. Ng, "Autonomous helicopter aerobatics through apprenticeship learning," Int. J. Robotics Res., vol. 29, pp. 1608-1639, 2010.
-
(2010)
Int. J. Robotics Res.
, vol.29
, pp. 1608-1639
-
-
Abbeel, P.1
Coates, A.2
Ng, A.Y.3
-
107
-
-
84907998216
-
Medical applications for 3D printing: Current and projected uses
-
Oct.
-
C. L. Ventola, "Medical applications for 3D printing: Current and projected uses," Pharmacy Therapeutics, vol. 39, pp. 704-711, Oct. 2014.
-
(2014)
Pharmacy Therapeutics
, vol.39
, pp. 704-711
-
-
Ventola, C.L.1
-
108
-
-
85015761418
-
-
Gartner Jan. 6
-
Gartner Jan. 6, 2016 Online. Available: http://www.gartner.com/ newsroom/id/3114217
-
(2016)
-
-
-
109
-
-
67650711872
-
The exoskeletons are here
-
D. P. Ferris, "The exoskeletons are here," J. NeuroEng. Rehabil., vol. 6, p. 17, 2009.
-
(2009)
J. NeuroEng. Rehabil.
, vol.6
, pp. 17
-
-
Ferris, D.P.1
-
110
-
-
36048977038
-
A physiologist's perspective on robotic exoskeletons for human locomotion
-
D. P. Ferris, G. S. Sawicki, and M. A. Daley, "A physiologist's perspective on robotic exoskeletons for human locomotion," Int. J. Humanoid Robotics, vol. 4, pp. 507-528, 2007.
-
(2007)
Int. J. Humanoid Robotics
, vol.4
, pp. 507-528
-
-
Ferris, D.P.1
Sawicki, G.S.2
Daley, M.A.3
|