-
1
-
-
84871909019
-
The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury
-
A. Esquenazi, M. Talaty, A. Packel, and M. Saulino, "The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury," Amer. J. Phys. Med. Rehab., vol. 91, no. 11, pp. 911-921, 2012.
-
(2012)
Amer. J. Phys. Med. Rehab.
, vol.91
, Issue.11
, pp. 911-921
-
-
Esquenazi, A.1
Talaty, M.2
Packel, A.3
Saulino, M.4
-
2
-
-
80055043614
-
Design and evaluation of Mina: A robotic orthosis for paraplegics
-
P. D. Neuhaus, J. H. Noorden, T. J. Craig, T. Torres, J. Kirschbaum, and J. E. Pratt, "Design and evaluation of Mina: A robotic orthosis for paraplegics," in Proc. IEEE Int. Conf. Rehabilitation Robotics, 2011, pp. 1-8.
-
(2011)
Proc IEEE Int. Conf. Rehabilitation Robotics
, pp. 1-8
-
-
Neuhaus, P.D.1
Noorden, J.H.2
Craig, T.J.3
Torres, T.4
Kirschbaum, J.5
Pratt, J.E.6
-
3
-
-
84894189972
-
Berkeley bionics introduces eLEGS robotic exoskeleton
-
Oct. [Online]. Available
-
E. Ackerman. (2010, Oct.). Berkeley bionics introduces eLEGS robotic exoskeleton. IEEE Spectrum. [Online]. Available: http://spectrum.ieee.org/automaton/robotics/medical-robots/berkeley-bionics-introduces-elegsrobotic-exoskeleton
-
(2010)
IEEE Spectrum
-
-
Ackerman, E.1
-
4
-
-
40949091084
-
Lower extremity exoskeletons and active orthoses: Challenges and state-of - The-art
-
A. Dollar and H. Herr, "Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art," IEEE Trans. Robot., vol. 24, no. 1, pp. 144-158, 2008.
-
(2008)
IEEE Trans. Robot.
, vol.24
, Issue.1
, pp. 144-158
-
-
Dollar, A.1
Herr, H.2
-
5
-
-
0344984224
-
Development of power assisting suit (miniaturization of supply system to realize wearable suit)
-
K. Yamamoto, M. Ishii, K. Hyodo, T. Yoshimitsu, and T. Matsuo, "Development of power assisting suit (miniaturization of supply system to realize wearable suit)," JSME Int. J. Ser. C, vol. 46, no. 3, pp. 923-930, 2003.
-
(2003)
JSME Int. J. Ser. C
, vol.46
, Issue.3
, pp. 923-930
-
-
Yamamoto, K.1
Ishii, M.2
Hyodo, K.3
Yoshimitsu, T.4
Matsuo, T.5
-
6
-
-
48349131439
-
Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients
-
S. Banala, S. Agrawal, and J. Scholz, "Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients," in Proc. IEEE 10th Int. Conf. Rehabilitation Robotics, 2007, pp. 401-407.
-
(2007)
Proc IEEE 10th Int. Conf. Rehabilitation Robotics
, pp. 401-407
-
-
Banala, S.1
Agrawal, S.2
Scholz, J.3
-
7
-
-
58149271044
-
Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency
-
G. S. Sawicki and D. P. Ferris, "Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency," J. Exp. Biol., vol. 212, no. 1, pp. 21-31, 2009.
-
(2009)
J. Exp. Biol.
, vol.212
, Issue.1
, pp. 21-31
-
-
Sawicki, G.S.1
Ferris, D.P.2
-
8
-
-
0242492035
-
Power assist method for HAL-3 using emg-based feedback controller
-
H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai, "Power assist method for HAL-3 using emg-based feedback controller," in Proc. IEEE Int. Conf. Systems, Man Cybernetics, 2003, vol. 2. pp. 1648-1653.
-
(2003)
Proc IEEE Int. Conf. Systems, Man Cybernetics
, vol.2
, pp. 1648-1653
-
-
Kawamoto, H.1
Lee, S.2
Kanbe, S.3
Sankai, Y.4
-
9
-
-
80055040417
-
Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals
-
H. Quintero, R. Farris, and M. Goldfarb, "Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals," in Proc. IEEE Int. Conf. Rehabilitation Robotics, 2011, pp. 1-6.
-
(2011)
Proc IEEE Int. Conf. Rehabilitation Robotics
, pp. 1-6
-
-
Quintero, H.1
Farris, R.2
Goldfarb, M.3
-
10
-
-
33646347917
-
The Berkeley lower extremity exoskeleton
-
Mar.
-
H. Kazerooni and R. Steger, "The Berkeley lower extremity exoskeleton," J. Dyn. Syst., Meas. Control, vol. 128, p. 14, Mar. 2006.
-
(2006)
J. Dyn. Syst., Meas. Control
, vol.128
, pp. 14
-
-
Kazerooni, H.1
Steger, R.2
-
11
-
-
36048986416
-
A quasi-passive leg exoskeleton for load-carrying augmentation
-
C. Walsh, K. Endo, and H. Herr, "A quasi-passive leg exoskeleton for load-carrying augmentation," Int. J. Humanoid Robot., vol. 4, no. 3, pp. 487-506, 2007.
-
(2007)
Int. J. Humanoid Robot.
, vol.4
, Issue.3
, pp. 487-506
-
-
Walsh, C.1
Endo, K.2
Herr, H.3
-
12
-
-
34547964847
-
Exoskeletons for human performance augmentation (EHPA): A program summary
-
E. Garcia, J. M. Sater, and J. Main, "Exoskeletons for human performance augmentation (EHPA): A program summary," J.-Robot. Soc. Japan, vol. 20, no. 8, pp. 44-48, 2002.
-
(2002)
J.-Robot. Soc. Japan
, vol.20
, Issue.8
, pp. 44-48
-
-
Garcia, E.1
Sater, J.M.2
Main, J.3
-
13
-
-
34648837871
-
Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation
-
J. Veneman, R. Kruidhof, E. Hekman, R. Ekkelenkamp, E. Van Asseldonk, and H. van der Kooij, "Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation," IEEE Trans. Neural Syst. Rehab. Eng., vol. 15, no. 3, pp. 379-386, 2007.
-
(2007)
IEEE Trans. Neural Syst. Rehab. Eng.
, vol.15
, Issue.3
, pp. 379-386
-
-
Veneman, J.1
Kruidhof, R.2
Hekman, E.3
Ekkelenkamp, R.4
Van Asseldonk, E.5
Kooij Der H.Van6
-
14
-
-
0142210181
-
Robotic orthosis Lokomat: A rehabilitation and research tool
-
S. Jezernik, G. Colombo, T. Keller, H. Frueh, and M. Morari, "Robotic orthosis Lokomat: A rehabilitation and research tool," Neuromodulation: Technol. Neural Interface, vol. 6, no. 2, pp. 108-115, 2003.
-
(2003)
Neuromodulation: Technol. Neural Interface
, vol.6
, Issue.2
, pp. 108-115
-
-
Jezernik, S.1
Colombo, G.2
Keller, T.3
Frueh, H.4
Morari, M.5
-
15
-
-
84866507204
-
Technologies for powered ankle-foot orthotic systems: Possibilities and challenges
-
K. A. Shorter, J. Xia, E. T. Hsiao-Wecksler, W. K. Durfee, and G. F. Kogler, "Technologies for powered ankle-foot orthotic systems: Possibilities and challenges," IEEE/ASME Trans. Mechatron., vol. 18, no. 1, pp. 337-347, 2013.
-
(2013)
IEEE/ASME Trans. Mechatron.
, vol.18
, Issue.1
, pp. 337-347
-
-
Shorter, K.A.1
Xia, J.2
Hsiao-Wecksler, E.T.3
Durfee, W.K.4
Kogler, G.F.5
-
16
-
-
84892585210
-
Multivariable static ankle mechanical impedance with active muscles
-
Jan.
-
H. Lee, P. Ho, M. Rastgaar, H. Krebs, and N. Hogan, "Multivariable static ankle mechanical impedance with active muscles," IEEE Trans. Neural Syst. Rehab. Eng., vol. 22, no. 1, pp. 44-52, Jan. 2014.
-
(2014)
IEEE Trans. Neural Syst. Rehab. Eng.
, vol.22
, Issue.1
, pp. 44-52
-
-
Lee, H.1
Ho, P.2
Rastgaar, M.3
Krebs, H.4
Hogan, N.5
-
18
-
-
67649250005
-
Self-aligning exoskeleton axes through decoupling of joint rotations and translations
-
A. H. Stienen, E. E. Hekman, F. C. van der Helm, and H. van der Kooij, "Self-aligning exoskeleton axes through decoupling of joint rotations and translations," IEEE Trans. Robot., vol. 25, no. 3, pp. 628-633, 2009.
-
(2009)
IEEE Trans. Robot.
, vol.25
, Issue.3
, pp. 628-633
-
-
Stienen, A.H.1
Hekman, E.E.2
Helm Der Van, F.C.3
Kooij Der H.Van4
-
19
-
-
84355167645
-
A self-adjusting knee exoskeleton for robotassisted treatment of knee injuries
-
M. A. Ergin and V. Patoglu, "A self-adjusting knee exoskeleton for robotassisted treatment of knee injuries," in Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems, 2011, pp. 4917-4922.
-
(2011)
Proc IEEE/RSJ Int. Conf. Intelligent Robots Systems
, pp. 4917-4922
-
-
Ergin, M.A.1
Patoglu, V.2
-
20
-
-
34247620224
-
The effects of adding mass to the legs on the energetics and biomechanics of walking
-
R. C. Browning, J. R. Modica, R. Kram, and A. Goswami, "The effects of adding mass to the legs on the energetics and biomechanics of walking," Med. Sci. Sports Exerc., vol. 39, no. 3, p. 515, 2007.
-
(2007)
Med. Sci. Sports Exerc.
, vol.39
, Issue.3
, pp. 515
-
-
Browning, R.C.1
Modica, J.R.2
Kram, R.3
Goswami, A.4
-
21
-
-
84873925118
-
A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking
-
P. Malcolm, W. Derave, S. Galle, and D. de Clercq, "A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking," PloS one, vol. 8, no. 2, p. e56137, 2013.
-
(2013)
PloS One
, vol.8
, Issue.2
, pp. e56137
-
-
Malcolm, P.1
Derave, W.2
Galle, S.3
De Clercq, D.4
-
22
-
-
84901689431
-
Autonomous exoskeleton reduces metabolic cost of human walking during load carriage
-
L. M. Mooney, E. J. Rouse, and H. M. Herr, "Autonomous exoskeleton reduces metabolic cost of human walking during load carriage," J. NeuroEng. Rehab., vol. 11, no. 1, p. 80, 2014.
-
(2014)
J. NeuroEng. Rehab.
, vol.11
, Issue.1
, pp. 80
-
-
Mooney, L.M.1
Rouse, E.J.2
Herr, H.M.3
-
23
-
-
84877897716
-
Effects of robotic knee exoskeleton on human energy expenditure
-
A. Gams, T. Petric, T. Debevec, and J. Babic, "Effects of robotic knee exoskeleton on human energy expenditure," IEEE Trans. Biomed. Eng., vol. 60, no. 6, pp. 1636-1644, 2013.
-
(2013)
IEEE Trans. Biomed. Eng.
, vol.60
, Issue.6
, pp. 1636-1644
-
-
Gams, A.1
Petric, T.2
Debevec, T.3
Babic, J.4
-
24
-
-
68149160908
-
Leg exoskeleton reduces the metabolic cost of human hopping
-
A. M. Grabowski and H. M. Herr, "Leg exoskeleton reduces the metabolic cost of human hopping," J. Appl. Physiol., vol. 107, no. 3, pp. 670-678, 2009.
-
(2009)
J. Appl. Physiol.
, vol.107
, Issue.3
, pp. 670-678
-
-
Grabowski, A.M.1
Herr, H.M.2
-
25
-
-
84887279903
-
A lightweight soft exosuit for gait assistance
-
M. Wehner, B. Quinlivan, P. M. Aubin, E. Martinez-Villalpando, M. Bauman, L. Stirling, K. Holt, R. Wood, and C. Walsh, "A lightweight soft exosuit for gait assistance," in Proc. IEEE, Int. Conf. Robotics Automation, 2013, pp. 3362-3369.
-
(2013)
Proc IEEE, Int. Conf. Robotics Automation
, pp. 3362-3369
-
-
Wehner, M.1
Quinlivan, B.2
Aubin, P.M.3
Martinez-Villalpando, E.4
Bauman, M.5
Stirling, L.6
Holt, K.7
Wood, R.8
Walsh, C.9
-
26
-
-
84891074688
-
Biologically-inspired soft exosuit
-
A. T. Asbeck, R. Dyer, A. Larusson, and C. J. Walsh, "Biologically-inspired soft exosuit," in Proc. Int. Conf. IEEE Rehabilitation Robotics, 2013, pp. 1-8.
-
(2013)
Proc. Int. Conf. IEEE Rehabilitation Robotics
, pp. 1-8
-
-
Asbeck, A.T.1
Dyer, R.2
Larusson, A.3
Walsh, C.J.4
-
27
-
-
80052622165
-
Applicability of shape memory alloy wire for an active, soft orthotic
-
L. Stirling, C.-H. Yu, J. Miller, E. Hawkes, R. Wood, E. Goldfield, and R. Nagpal, "Applicability of shape memory alloy wire for an active, soft orthotic," J. Mater. Eng. Performance, vol. 20, nos. 4-5, pp. 658-662, 2011.
-
(2011)
J. Mater. Eng. Performance
, vol.20
, Issue.4-5
, pp. 658-662
-
-
Stirling, L.1
Yu, C.-H.2
Miller, J.3
Hawkes, E.4
Wood, R.5
Goldfield, E.6
Nagpal, R.7
-
28
-
-
84455192867
-
Bio-inspired active soft orthotic device for ankle foot pathologies
-
Y.-L. Park, B.-R. Chen, D. Young, L. Stirling, R. J. Wood, E. Goldfield, and R. Nagpal, "Bio-inspired active soft orthotic device for ankle foot pathologies," in Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems, 2011, pp. 4488-4495.
-
(2011)
Proc IEEE/RSJ Int. Conf. Intelligent Robots Systems
, pp. 4488-4495
-
-
Park, Y.-L.1
Chen, B.-R.2
Young, D.3
Stirling, L.4
Wood, R.J.5
Goldfield, E.6
Nagpal, R.7
-
29
-
-
84869422310
-
Bio-inspired design of soft robotic assistive devices: The interface of physics, biology, and behavior
-
E. C. Goldfield, P. Yong-Lae, C. Bor-Rong, H. Wen-Hao, D. Young, M. Wehner, D. G. Kelty-Stephen, L. Stirling, M. Weinberg, D. Newman, R. Nagpal, E. Saltzman, K. G. Holt, C. Walsh, and R. J. Wood, "Bio-inspired design of soft robotic assistive devices: The interface of physics, biology, and behavior," Ecological Psychol., vol. 24, no. 4, pp. 300-327, 2012.
-
(2012)
Ecological Psychol.
, vol.24
, Issue.4
, pp. 300-327
-
-
Goldfield, E.C.1
Yong-Lae, P.2
Bor-Rong, C.3
Wen-Hao, H.4
Young, D.5
Wehner, M.6
Kelty-Stephen, D.G.7
Stirling, L.8
Weinberg, M.9
Newman, D.10
Nagpal, R.11
Saltzman, E.12
Holt, K.G.13
Walsh, C.14
Wood, R.J.15
-
30
-
-
84891121547
-
Development of an orthosis for walking assistance using pneumatic artificial muscle: A quantitative assessment of the effect of assistance
-
T. Kawamura, K. Takanaka, T. Nakamura, and H. Osumi, "Development of an orthosis for walking assistance using pneumatic artificial muscle: A quantitative assessment of the effect of assistance," in Proc. Int. Conf. IEEE Rehabilitation Robotics, 2013, pp. 1-6.
-
(2013)
Proc. Int. Conf. IEEE Rehabilitation Robotics
, pp. 1-6
-
-
Kawamura, T.1
Takanaka, K.2
Nakamura, T.3
Osumi, H.4
-
31
-
-
34249043372
-
-
Rand Development Corp. Report to Behavioral Sciences Lab., Wright-Patterson AFB, Dayton, Ohio, Tech. Rep. AMRL-TR-64-118
-
A. S. Iberall, "The use of lines of nonextension to improve mobility in fullpressure suits," Rand Development Corp. Report to Behavioral Sciences Lab., Wright-Patterson AFB, Dayton, Ohio, Tech. Rep. AMRL-TR-64-118, 1964.
-
(1964)
The Use of Lines of Nonextension to Improve Mobility in Fullpressure Suits
-
-
Iberall, A.S.1
-
32
-
-
0034941922
-
The force resulting from the action of mono-and biarticular muscles in a limb
-
A. Hof, "The force resulting from the action of mono-and biarticular muscles in a limb," J. Biomechanics, vol. 34, no. 8, pp. 1085-1089, 2001.
-
(2001)
J. Biomechanics
, vol.34
, Issue.8
, pp. 1085-1089
-
-
Hof, A.1
-
33
-
-
0017281089
-
Effects of external pressure loading on human skin blood flow measured by 133xe clearance
-
G. Holloway, C. Daly, D. Kennedy, and J. Chimoskey, "Effects of external pressure loading on human skin blood flow measured by 133xe clearance," J. Appl. Physiol., vol. 40, no. 4, pp. 597-600, 1976.
-
(1976)
J. Appl. Physiol.
, vol.40
, Issue.4
, pp. 597-600
-
-
Holloway, G.1
Daly, C.2
Kennedy, D.3
Chimoskey, J.4
-
34
-
-
0024381883
-
Biomechanics of orthoses for the subluxed shoulder
-
J. Cool, "Biomechanics of orthoses for the subluxed shoulder," Prosthet. Orthot. Int., vol. 13, no. 2, pp. 90-96, 1989.
-
(1989)
Prosthet. Orthot. Int.
, vol.13
, Issue.2
, pp. 90-96
-
-
Cool, J.1
-
35
-
-
33750301256
-
An efficient robotic tendon for gait assistance
-
K. W. Hollander, R. Ilg, T. G. Sugar, and D. Herring, "An efficient robotic tendon for gait assistance," J. Biomech. Eng., vol. 128, no. 5, p. 788, 2006.
-
(2006)
J. Biomech. Eng.
, vol.128
, Issue.5
, pp. 788
-
-
Hollander, K.W.1
Ilg, R.2
Sugar, T.G.3
Herring, D.4
-
36
-
-
84919615544
-
Multi-joint actuation platform for lower extremity soft exosuits
-
Y. Ding, I. Galiana, A. Asbeck, B. Quinlivan, S. M. M. de Rossi, and C. Walsh, "Multi-joint actuation platform for lower extremity soft exosuits," in Proc. Int. Conf. IEEE Robotics Automation, 2014, pp. 1327-1334.
-
(2014)
Proc. Int. Conf. IEEE Robotics Automation
, pp. 1327-1334
-
-
Ding, Y.1
Galiana, I.2
Asbeck, A.3
Quinlivan, B.4
De Rossi, S.M.M.5
Walsh, C.6
-
37
-
-
84914125071
-
Wearable soft sensing suit for human gait measurement
-
submitted for publication
-
Y. Menguc, Y.-L. Park, H. Pei, D. Vogt, P. Aubin, E. Winchell, L. Fluke, L. Stirling, R. J. Wood, and C. J. Walsh, "Wearable soft sensing suit for human gait measurement," Int. J. Robot. Res., submitted for publication, 2014.
-
(2014)
Int. J. Robot. Res
-
-
Menguc, Y.1
Park, Y.-L.2
Pei, H.3
Vogt, D.4
Aubin, P.5
Winchell, E.6
Fluke, L.7
Stirling, L.8
Wood, R.J.9
Walsh, C.J.10
-
38
-
-
33845529645
-
Design, implementation, and experimental results of a quaternion-based kalman filter for human body motion tracking
-
Dec.
-
X. Yun and E. R. Bachmann, "Design, implementation, and experimental results of a quaternion-based kalman filter for human body motion tracking," IEEE Trans. Robot., vol. 22, no. 6, pp. 1216-1227, Dec. 2006.
-
(2006)
IEEE Trans. Robot.
, vol.22
, Issue.6
, pp. 1216-1227
-
-
Yun, X.1
Bachmann, E.R.2
-
39
-
-
34347366223
-
An introduction to inertial and visual sensing
-
June
-
P. Corke, J. Lobo, and J. Dias, "An introduction to inertial and visual sensing," Int. J. Robot. Res., vol. 26, no. 6, pp. 519-535, June 2007.
-
(2007)
Int. J. Robot. Res.
, vol.26
, Issue.6
, pp. 519-535
-
-
Corke, P.1
Lobo, J.2
Dias, J.3
-
40
-
-
80053480442
-
A non-differential elastomer curvature sensor for softer-than-skin electronics
-
Oct.
-
C. Majidi, R. K. Kramer, and R. J. Wood, "A non-differential elastomer curvature sensor for softer-than-skin electronics," Smart Mater. Structures, vol. 20, no. 10, p. 105017, Oct. 2011.
-
(2011)
Smart Mater. Structures
, vol.20
, Issue.10
, pp. 105017
-
-
Majidi, C.1
Kramer, R.K.2
Wood, R.J.3
-
41
-
-
84884141665
-
Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels
-
D. Vogt, Y.-L. Park, and R. Wood, "Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels," IEEE Sensors J., vol. 13, no. 10, pp. 4056-4064, 2013.
-
(2013)
IEEE Sensors J.
, vol.13
, Issue.10
, pp. 4056-4064
-
-
Vogt, D.1
Park, Y.-L.2
Wood, R.3
-
42
-
-
78649744670
-
Hyperelastic pressure sensing with a liquid-embedded elastomer
-
Dec.
-
Y.-L. Park, C. Majidi, R. K. Kramer, P. Bérard, and R. J. Wood, "Hyperelastic pressure sensing with a liquid-embedded elastomer," J. Micromech. Microeng., vol. 20, no. 12, p. 125029, Dec. 2010.
-
(2010)
J. Micromech. Microeng.
, vol.20
, Issue.12
, pp. 125029
-
-
Park, Y.-L.1
Majidi, C.2
Kramer, R.K.3
Bérard, P.4
Wood, R.J.5
-
43
-
-
84862514369
-
Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors
-
Aug.
-
Y.-L. Park, B.-R. Chen, and R. J. Wood, "Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors," IEEE Sensors J., vol. 12, no. 8, pp. 2711-2718, Aug. 2012.
-
(2012)
IEEE Sensors J.
, vol.12
, Issue.8
, pp. 2711-2718
-
-
Park, Y.-L.1
Chen, B.-R.2
Wood, R.J.3
-
44
-
-
84873967620
-
A soft multi-axis force sensor
-
Oct.
-
D. Vogt, Y.-L. Park, and R. J. Wood, "A soft multi-axis force sensor," in Proc. IEEE Sensors Conf., Oct. 2012, pp. 897-900.
-
(2012)
Proc IEEE Sensors Conf.
, pp. 897-900
-
-
Vogt, D.1
Park, Y.-L.2
Wood, R.J.3
-
45
-
-
84887291304
-
Soft wearable motion sensing suit for lower limb biomechanics measurements
-
Y. Menguc, Y. Park, E. Martinez-Villalpando, P. Aubin, M. Zisook, L. Stirling, R. Wood, and C. Walsh, "Soft wearable motion sensing suit for lower limb biomechanics measurements," in Proc. IEEE Int. Conf. Robotics Automation, 2013, pp. 5309-5316.
-
(2013)
Proc IEEE Int. Conf. Robotics Automation
, pp. 5309-5316
-
-
Menguc, Y.1
Park, Y.2
Martinez-Villalpando, E.3
Aubin, P.4
Zisook, M.5
Stirling, L.6
Wood, R.7
Walsh, C.8
-
46
-
-
84455200619
-
Soft curvature sensors for joint angle proprioception
-
Sept.
-
R. K. Kramer, C. Majidi, R. Sahai, and R. J. Wood, "Soft curvature sensors for joint angle proprioception," in Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems, Sept. 2011, pp. 1919-1926.
-
(2011)
Proc IEEE/RSJ Int. Conf. Intelligent Robots Systems
, pp. 1919-1926
-
-
Kramer, R.K.1
Majidi, C.2
Sahai, R.3
Wood, R.J.4
-
47
-
-
33750339324
-
Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals
-
J. M. Jasiewicz, J. H. J. Allum, J. W. Middleton, A. Barriskill, P. Condie, B. Purcell, and R. C. T. Li, "Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals," Gait Posture, vol. 24, no. 4, pp. 502-509, 2006.
-
(2006)
Gait Posture
, vol.24
, Issue.4
, pp. 502-509
-
-
Jasiewicz, J.M.1
Allum, J.H.J.2
Middleton, J.W.3
Barriskill, A.4
Condie, P.5
Purcell, B.6
Li, R.C.T.7
-
48
-
-
84859737017
-
Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons
-
R. Jiménez-Fabián and O. Verlinden, "Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons," Med. Eng. Phys., vol. 34, no. 4, pp. 397-408, 2011.
-
(2011)
Med. Eng. Phys.
, vol.34
, Issue.4
, pp. 397-408
-
-
Jiménez-Fabián, R.1
Verlinden, O.2
-
49
-
-
84856481679
-
Inertia compensation control of a one-degree-of-freedom exoskeleton for lowerlimb assistance: Initial experiments
-
G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami, "Inertia compensation control of a one-degree-of-freedom exoskeleton for lowerlimb assistance: Initial experiments," IEEE Trans. Neural Rehab. Syst. Eng., vol. 20, no. 1, pp. 68-77, 2012.
-
(2012)
IEEE Trans. Neural Rehab. Syst. Eng.
, vol.20
, Issue.1
, pp. 68-77
-
-
Aguirre-Ollinger, G.1
Colgate, J.E.2
Peshkin, M.A.3
Goswami, A.4
-
50
-
-
84930593012
-
A biologically-inspired soft exosuit for walking assistance
-
submitted for publication
-
A. T. Asbeck, S. M. M. De Rossi, K. G. Holt, and C. J. Walsh, "A biologically-inspired soft exosuit for walking assistance," Int. J. Robot. Res., submitted for publication, 2014.
-
(2014)
Int. J. Robot. Res
-
-
Asbeck, A.T.1
De Rossi, S.M.M.2
Holt, K.G.3
Walsh, C.J.4
-
51
-
-
46849086771
-
Mechanics and energetics of level walking with powered ankle exoskeletons
-
May
-
G. S. Sawicki and D. P. Ferris, "Mechanics and energetics of level walking with powered ankle exoskeletons," J. Exp. Biol., vol. 211, pt. 9, pp. 1402-1413, May 2008.
-
(2008)
J. Exp. Biol.
, vol.211
, pp. 1402-1413
-
-
Sawicki, G.S.1
Ferris, D.P.2
-
52
-
-
0018634846
-
EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man
-
Sept.
-
P. V. Komi and P. Tesch, "EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man," Eur. J. Appl. Physiol. Occup. Physiol., vol. 42, no. 1, pp. 41-50, Sept. 1979.
-
(1979)
Eur. J. Appl. Physiol. Occup. Physiol.
, vol.42
, Issue.1
, pp. 41-50
-
-
Komi, P.V.1
Tesch, P.2
|