메뉴 건너뛰기




Volumn 17, Issue 2, 2017, Pages

An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox

Author keywords

Deep convolutional neural networks; Fault diagnosis; Feature learning; Multi sensor data fusion; Planetary gearbox

Indexed keywords

BACKPROPAGATION; CONVOLUTION; DAMAGE DETECTION; DEEP NEURAL NETWORKS; FAILURE ANALYSIS; FEATURE EXTRACTION; GEARS; NEURAL NETWORKS; SENSOR DATA FUSION; SUPPORT VECTOR MACHINES;

EID: 85013831942     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17020414     Document Type: Article
Times cited : (350)

References (47)
  • 1
    • 84890044969 scopus 로고    scopus 로고
    • Condition monitoring and fault diagnosis of planetary gearboxes: A review
    • Lei, Y.; Lin, J.; Zuo, M.J.; He, Z. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305. [CrossRef].
    • (2014) Measurement , vol.48 , pp. 292-305
    • Lei, Y.1    Lin, J.2    Zuo, M.J.3    He, Z.4
  • 2
    • 84975797385 scopus 로고    scopus 로고
    • Feature-level fusion based on wavelet transform and artificial neural network for fault diagnosis of planetary gearbox using acoustic and vibration signals. Insight Non-Destr. Test. Cond
    • Khazaee, M.; Ahmadi, H.; Omid, M.; Banakar, A.; Moosavian, A. Feature-level fusion based on wavelet transform and artificial neural network for fault diagnosis of planetary gearbox using acoustic and vibration signals. Insight Non-Destr. Test. Cond. Monit. 2013, 55, 323–330. [CrossRef].
    • (2013) Monit , vol.55 , pp. 323-330
    • Khazaee, M.1    Ahmadi, H.2    Omid, M.3    Banakar, A.4    Moosavian, A.5
  • 3
    • 84863270617 scopus 로고    scopus 로고
    • A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes
    • Lei, Y.; Lin, J.; He, Z.; Kong, D. A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes. Sensors 2012, 12, 2005–2017. [CrossRef] [PubMed].
    • (2012) Sensors , vol.12 , pp. 2005-2017
    • Lei, Y.1    Lin, J.2    He, Z.3    Kong, D.4
  • 4
    • 84963864627 scopus 로고    scopus 로고
    • Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
    • Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal Process. 2016, 76, 283–293. [CrossRef].
    • (2016) Mech. Syst. Signal Process , vol.76 , pp. 283-293
    • Li, C.1    Sanchez, R.V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vásquez, R.E.6
  • 5
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [CrossRef].
    • (1997) Proc. IEEE , vol.85 , pp. 6-23
    • Hall, D.L.1    Llinas, J.2
  • 6
    • 84867336190 scopus 로고    scopus 로고
    • Multisensor data fusion: A review of the state-of-the-art. Inf
    • Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 2013, 14, 28–44. [CrossRef].
    • (2013) Fusion , vol.14 , pp. 28-44
    • Khaleghi, B.1    Khamis, A.2    Karray, F.O.3    Razavi, S.N.4
  • 7
    • 84901627230 scopus 로고    scopus 로고
    • Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations
    • Serdio, F.; Lughofer, E.; Pichler, K.; Buchegger, T.; Pichler, M.; Efendic, H. Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations. Inf. Fusion 2014, 20, 272–291. [CrossRef].
    • (2014) Inf. Fusion , vol.20 , pp. 272-291
    • Serdio, F.1    Lughofer, E.2    Pichler, K.3    Buchegger, T.4    Pichler, M.5    Efendic, H.6
  • 8
    • 84963934455 scopus 로고    scopus 로고
    • An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data
    • Lei, Y.; Jia, F.; Lin, J.; Xing, S. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef].
    • (2016) IEEE Trans. Ind. Electron , vol.63 , pp. 3137-3147
    • Lei, Y.1    Jia, F.2    Lin, J.3    Xing, S.4
  • 9
    • 84994474581 scopus 로고    scopus 로고
    • Real-Time Motor Fault Detection by 1D Convolutional Neural Networks
    • Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M. Real-Time Motor Fault Detection by 1D Convolutional Neural Networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef].
    • (2016) IEEE Trans. Ind. Electron , vol.63 , pp. 7067-7075
    • Ince, T.1    Kiranyaz, S.2    Eren, L.3    Askar, M.4
  • 11
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed].
    • (2015) Nature , vol.521 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 12
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2014, 61, 85–117. [CrossRef] [PubMed].
    • (2014) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 13
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI. Found
    • Bengio, Y. Learning Deep Architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [CrossRef].
    • (2009) Trends® Mach. Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 15
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72–73, 303–315. [CrossRef].
    • (2016) Mech. Syst. Signal Process , vol.72-73 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 16
    • 84982792319 scopus 로고    scopus 로고
    • Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    • Lu, C.; Wang, Z.Y.; Qin, W.L.; Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 2016, 130, 377–388. [CrossRef].
    • (2016) Signal Process , vol.130 , pp. 377-388
    • Lu, C.1    Wang, Z.Y.2    Qin, W.L.3    Ma, J.4
  • 17
    • 84964855691 scopus 로고    scopus 로고
    • A sparse auto-encoder-based deep neural network approach for induction motor faults classification
    • Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 2016, 89, 171–178. [CrossRef].
    • (2016) Measurement , vol.89 , pp. 171-178
    • Sun, W.1    Shao, S.2    Zhao, R.3    Yan, R.4    Zhang, X.5    Chen, X.6
  • 18
    • 85011676262 scopus 로고    scopus 로고
    • Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks
    • Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [CrossRef] [PubMed].
    • (2017) Sensors , vol.17 , pp. 273
    • Zhao, R.1    Yan, R.2    Wang, J.3    Mao, K.4
  • 19
    • 84997079451 scopus 로고    scopus 로고
    • Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
    • Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef].
    • (2017) J. Sound Vib , vol.388 , pp. 154-170
    • Abdeljaber, O.1    Avci, O.2    Kiranyaz, S.3    Gabbouj, M.4    Inman, D.J.5
  • 20
    • 84979085360 scopus 로고    scopus 로고
    • Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
    • Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [CrossRef].
    • (2016) Measurement , vol.93 , pp. 490-502
    • Guo, X.1    Chen, L.2    Shen, C.3
  • 21
    • 84870183903 scopus 로고    scopus 로고
    • 3D Convolutional Neural Networks for Human Action Recognition
    • Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [CrossRef] [PubMed].
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 26
    • 0032123630 scopus 로고    scopus 로고
    • Evaluation of convolutional neural networks for visual recognition
    • Nebauer, C. Evaluation of convolutional neural networks for visual recognition. IEEE Trans. Neural Netw. 1998, 9, 685–696. [CrossRef] [PubMed].
    • (1998) IEEE Trans. Neural Netw , vol.9 , pp. 685-696
    • Nebauer, C.1
  • 28
    • 84876936237 scopus 로고    scopus 로고
    • Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
    • Lei, Y.; Han, D.; Lin, J.; He, Z. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech. Syst. Signal Process. 2013, 38, 113–124. [CrossRef].
    • (2013) Mech. Syst. Signal Process , vol.38 , pp. 113-124
    • Lei, Y.1    Han, D.2    Lin, J.3    He, Z.4
  • 29
    • 84872802039 scopus 로고    scopus 로고
    • Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals
    • Sun, H.; Zi, Y.; He, Z.; Yuan, J.; Wang, X.; Chen, L. Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals. Sensors 2013, 13, 1183–1209. [CrossRef] [PubMed].
    • (2013) Sensors , vol.13 , pp. 1183-1209
    • Sun, H.1    Zi, Y.2    He, Z.3    Yuan, J.4    Wang, X.5    Chen, L.6
  • 30
    • 84907851741 scopus 로고    scopus 로고
    • Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis
    • Amarnath, M.; Krishna, I.R.P. Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis. Measurement 2014, 58, 154–164. [CrossRef].
    • (2014) Measurement , vol.58 , pp. 154-164
    • Amarnath, M.1    Krishna, I.2
  • 31
    • 70350426577 scopus 로고    scopus 로고
    • Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals
    • Immovilli, F.; Cocconcelli, M.; Bellini, A.; Rubini, R. Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals. IEEE Trans. Ind. Electron. 2009, 56, 4710–4717. [CrossRef].
    • (2009) IEEE Trans. Ind. Electron , vol.56 , pp. 4710-4717
    • Immovilli, F.1    Cocconcelli, M.2    Bellini, A.3    Rubini, R.4
  • 32
    • 27644587943 scopus 로고    scopus 로고
    • Monitoring gear vibrations through motor current signature analysis and wavelet transform
    • Kar, C.; Mohanty, A.R. Monitoring gear vibrations through motor current signature analysis and wavelet transform. Mech. Syst. Signal Process. 2006, 20, 158–187. [CrossRef].
    • (2006) Mech. Syst. Signal Process , vol.20 , pp. 158-187
    • Kar, C.1    Mohanty, A.R.2
  • 33
    • 84870880556 scopus 로고    scopus 로고
    • Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes
    • Raleigh, NC, USA, 15–20 September
    • Lu, D.; Gong, X.; Qiao, W. Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes. In Proceedings of the Energy Conversion Congress and Exposition, Raleigh, NC, USA, 15–20 September 2012; pp. 3780–3786.
    • (2012) Roceedings of the Energy Conversion Congress and Exposition , pp. 3780-3786
    • Lu, D.1    Gong, X.2
  • 34
    • 85045286157 scopus 로고    scopus 로고
    • Contribution of angular measurements to intelligent gear faults diagnosis
    • Fedala, S.; Rémond, D.; Zegadi, R.; Felkaoui, A. Contribution of angular measurements to intelligent gear faults diagnosis. J. Intell. Manuf. 2015. [CrossRef].
    • (2015) J. Intell. Manuf
    • Fedala, S.1    Rémond, D.2    Zegadi, R.3    Felkaoui, A.4
  • 35
    • 84979784023 scopus 로고    scopus 로고
    • Low speed bearings fault detection and size estimation using instantaneous angular speed
    • Moustafa, W.; Cousinard, O.; Bolaers, F.; Sghir, K.; Dron, J.P. Low speed bearings fault detection and size estimation using instantaneous angular speed. J. Vib. Control 2014, 22, 3413–3425. [CrossRef].
    • (2014) J. Vib. Control , vol.22 , pp. 3413-3425
    • Moustafa, W.1    Cousinard, O.2    Bolaers, F.3    Sghir, K.4    Dron, J.P.5
  • 37
    • 84946042100 scopus 로고    scopus 로고
    • Gearbox Fault Identification and Classification with Convolutional Neural Networks
    • Chen, Z.Q.; Li, C.; Sanchez, R.V. Gearbox Fault Identification and Classification with Convolutional Neural Networks. Shock Vib. 2015, 2015, 390134. [CrossRef].
    • (2015) Shock Vib , vol.2015
    • Chen, Z.Q.1    Li, C.2    Sanchez, R.V.3
  • 40
    • 84957926960 scopus 로고    scopus 로고
    • A Survey of Randomized Algorithms for Training Neural Networks
    • Zhang, L.; Suganthan, P.N. A Survey of Randomized Algorithms for Training Neural Networks. Inf. Sci. 2016, 364–365, 146–155. [CrossRef].
    • (2016) Inf. Sci , vol.364-365 , pp. 146-155
    • Zhang, L.1    Suganthan, P.N.2
  • 41
    • 84906214784 scopus 로고    scopus 로고
    • Exploring Convolutional Neural Network Structures and Optimization Techniques for Speech Recognition
    • Lyon, France, 25–29 August
    • Abdel-Hamid, O.; Li, D.; Dong, Y. Exploring Convolutional Neural Network Structures and Optimization Techniques for Speech Recognition. In Proceedings of the INTERSPEECH, Lyon, France, 25–29 August 2013; pp. 1173–1175.
    • (2013) Proceedings of the INTERSPEECH , pp. 1173-1175
    • Abdel-Hamid, O.1    Li, D.2    Dong, Y.3
  • 42
    • 85011634438 scopus 로고    scopus 로고
    • Application of psychoacoustics for gear fault diagnosis using artificial neural network
    • Kane, P.V.; Andhare, A.B. Application of psychoacoustics for gear fault diagnosis using artificial neural network. J. Low Freq. Noise Vib. Act.Control 2016, 35, 207–220. [CrossRef].
    • (2016) J. Low Freq. Noise Vib. Act.Control , vol.35 , pp. 207-220
    • Kane, P.V.1    Andhare, A.B.2
  • 43
    • 85042913618 scopus 로고    scopus 로고
    • Gear Fault Diagnosis Based on Angular Measurements and Support Vector Machines in Normal and Nonstationary Conditions
    • Springer: Berlin/Heidelberg, Germany
    • Fedala, S.; Rémond, D.; Zegadi, R.; Felkaoui, A. Gear Fault Diagnosis Based on Angular Measurements and Support Vector Machines in Normal and Nonstationary Conditions. In Condition Monitoring of Machinery in Non-Stationary Operations; Springer: Berlin/Heidelberg, Germany, 2016; pp. 291–308.
    • (2016) Condition Monitoring of Machinery in Non-Stationary Operations , pp. 291-308
    • Fedala, S.1    Rémond, D.2    Zegadi, R.3    Felkaoui, A.4
  • 44
    • 84975124887 scopus 로고    scopus 로고
    • Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
    • Li, C.; Sánchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Sensors 2016, 16, 895. [CrossRef] [PubMed].
    • (2016) Sensors , vol.16 , pp. 895
    • Li, C.1    Sánchez, R.V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5
  • 45
    • 84891106528 scopus 로고    scopus 로고
    • Adaptive Feature Extraction and SVM Classification for Real-Time Fault Diagnosis of Drivetrain Gearboxes
    • Denver, CO, USA, 15–19 September
    • Lu, D.; Qiao, W. Adaptive Feature Extraction and SVM Classification for Real-Time Fault Diagnosis of Drivetrain Gearboxes. In Proceedings of the Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 3934–3940.
    • (2013) Proceedings of the Energy Conversion Congress and Exposition , pp. 3934-3940
    • Lu, D.1    Qiao, W.2
  • 46
    • 27344460283 scopus 로고    scopus 로고
    • A comparative study of three artificial neural networks for the detection and classification of gear faults
    • Abumahfouz, I.A. A comparative study of three artificial neural networks for the detection and classification of gear faults. Int. J. Gen. Syst. 2005, 34, 261–277. [CrossRef].
    • (2005) Int. J. Gen. Syst , vol.34 , pp. 261-277
    • Abumahfouz, I.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.