-
1
-
-
84890044969
-
Condition monitoring and fault diagnosis of planetary gearboxes: A review
-
Lei, Y.; Lin, J.; Zuo, M.J.; He, Z. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305. [CrossRef].
-
(2014)
Measurement
, vol.48
, pp. 292-305
-
-
Lei, Y.1
Lin, J.2
Zuo, M.J.3
He, Z.4
-
2
-
-
84975797385
-
Feature-level fusion based on wavelet transform and artificial neural network for fault diagnosis of planetary gearbox using acoustic and vibration signals. Insight Non-Destr. Test. Cond
-
Khazaee, M.; Ahmadi, H.; Omid, M.; Banakar, A.; Moosavian, A. Feature-level fusion based on wavelet transform and artificial neural network for fault diagnosis of planetary gearbox using acoustic and vibration signals. Insight Non-Destr. Test. Cond. Monit. 2013, 55, 323–330. [CrossRef].
-
(2013)
Monit
, vol.55
, pp. 323-330
-
-
Khazaee, M.1
Ahmadi, H.2
Omid, M.3
Banakar, A.4
Moosavian, A.5
-
3
-
-
84863270617
-
A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes
-
Lei, Y.; Lin, J.; He, Z.; Kong, D. A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes. Sensors 2012, 12, 2005–2017. [CrossRef] [PubMed].
-
(2012)
Sensors
, vol.12
, pp. 2005-2017
-
-
Lei, Y.1
Lin, J.2
He, Z.3
Kong, D.4
-
4
-
-
84963864627
-
Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
-
Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal Process. 2016, 76, 283–293. [CrossRef].
-
(2016)
Mech. Syst. Signal Process
, vol.76
, pp. 283-293
-
-
Li, C.1
Sanchez, R.V.2
Zurita, G.3
Cerrada, M.4
Cabrera, D.5
Vásquez, R.E.6
-
5
-
-
0030735959
-
An introduction to multisensor data fusion
-
Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [CrossRef].
-
(1997)
Proc. IEEE
, vol.85
, pp. 6-23
-
-
Hall, D.L.1
Llinas, J.2
-
6
-
-
84867336190
-
Multisensor data fusion: A review of the state-of-the-art. Inf
-
Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 2013, 14, 28–44. [CrossRef].
-
(2013)
Fusion
, vol.14
, pp. 28-44
-
-
Khaleghi, B.1
Khamis, A.2
Karray, F.O.3
Razavi, S.N.4
-
7
-
-
84901627230
-
Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations
-
Serdio, F.; Lughofer, E.; Pichler, K.; Buchegger, T.; Pichler, M.; Efendic, H. Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations. Inf. Fusion 2014, 20, 272–291. [CrossRef].
-
(2014)
Inf. Fusion
, vol.20
, pp. 272-291
-
-
Serdio, F.1
Lughofer, E.2
Pichler, K.3
Buchegger, T.4
Pichler, M.5
Efendic, H.6
-
8
-
-
84963934455
-
An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data
-
Lei, Y.; Jia, F.; Lin, J.; Xing, S. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef].
-
(2016)
IEEE Trans. Ind. Electron
, vol.63
, pp. 3137-3147
-
-
Lei, Y.1
Jia, F.2
Lin, J.3
Xing, S.4
-
9
-
-
84994474581
-
Real-Time Motor Fault Detection by 1D Convolutional Neural Networks
-
Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M. Real-Time Motor Fault Detection by 1D Convolutional Neural Networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef].
-
(2016)
IEEE Trans. Ind. Electron
, vol.63
, pp. 7067-7075
-
-
Ince, T.1
Kiranyaz, S.2
Eren, L.3
Askar, M.4
-
10
-
-
84879854889
-
Representation Learning: A Review and New Perspectives
-
Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed].
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
11
-
-
84930630277
-
Deep learning
-
Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed].
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
12
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2014, 61, 85–117. [CrossRef] [PubMed].
-
(2014)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
13
-
-
69349090197
-
Learning Deep Architectures for AI. Found
-
Bengio, Y. Learning Deep Architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [CrossRef].
-
(2009)
Trends® Mach. Learn
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
14
-
-
84973470244
-
Convolutional Neural Network Based Fault Detection for Rotating Machinery
-
Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Walle, R.V.D.; Hoecke, S.V. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef].
-
(2016)
J. Sound Vib
, vol.377
, pp. 331-345
-
-
Janssens, O.1
Slavkovikj, V.2
Vervisch, B.3
Stockman, K.4
Loccufier, M.5
Verstockt, S.6
Walle, R.V.D.7
Hoecke, S.V.8
-
15
-
-
84955693855
-
Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
-
Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72–73, 303–315. [CrossRef].
-
(2016)
Mech. Syst. Signal Process
, vol.72-73
, pp. 303-315
-
-
Jia, F.1
Lei, Y.2
Lin, J.3
Zhou, X.4
Lu, N.5
-
16
-
-
84982792319
-
Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
-
Lu, C.; Wang, Z.Y.; Qin, W.L.; Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 2016, 130, 377–388. [CrossRef].
-
(2016)
Signal Process
, vol.130
, pp. 377-388
-
-
Lu, C.1
Wang, Z.Y.2
Qin, W.L.3
Ma, J.4
-
17
-
-
84964855691
-
A sparse auto-encoder-based deep neural network approach for induction motor faults classification
-
Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 2016, 89, 171–178. [CrossRef].
-
(2016)
Measurement
, vol.89
, pp. 171-178
-
-
Sun, W.1
Shao, S.2
Zhao, R.3
Yan, R.4
Zhang, X.5
Chen, X.6
-
18
-
-
85011676262
-
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks
-
Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [CrossRef] [PubMed].
-
(2017)
Sensors
, vol.17
, pp. 273
-
-
Zhao, R.1
Yan, R.2
Wang, J.3
Mao, K.4
-
19
-
-
84997079451
-
Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
-
Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef].
-
(2017)
J. Sound Vib
, vol.388
, pp. 154-170
-
-
Abdeljaber, O.1
Avci, O.2
Kiranyaz, S.3
Gabbouj, M.4
Inman, D.J.5
-
20
-
-
84979085360
-
Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
-
Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [CrossRef].
-
(2016)
Measurement
, vol.93
, pp. 490-502
-
-
Guo, X.1
Chen, L.2
Shen, C.3
-
21
-
-
84870183903
-
3D Convolutional Neural Networks for Human Action Recognition
-
Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [CrossRef] [PubMed].
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
22
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Columbus, OH, USA, 23–28 June
-
Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference On Computer Vision and Patten Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Patten Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
23
-
-
85083951635
-
-
arXiv 2014, arXiv:1312.6229
-
Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; Lecun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv 2014, arXiv:1312.6229.
-
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
Lecun, Y.6
-
25
-
-
84876231242
-
ImageNet Classification with Deep Convolutional Neural Networks
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105.
-
(2012)
Adv. Neural Inf. Process. Syst
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
0032123630
-
Evaluation of convolutional neural networks for visual recognition
-
Nebauer, C. Evaluation of convolutional neural networks for visual recognition. IEEE Trans. Neural Netw. 1998, 9, 685–696. [CrossRef] [PubMed].
-
(1998)
IEEE Trans. Neural Netw
, vol.9
, pp. 685-696
-
-
Nebauer, C.1
-
27
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed].
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
28
-
-
84876936237
-
Planetary gearbox fault diagnosis using an adaptive stochastic resonance method
-
Lei, Y.; Han, D.; Lin, J.; He, Z. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech. Syst. Signal Process. 2013, 38, 113–124. [CrossRef].
-
(2013)
Mech. Syst. Signal Process
, vol.38
, pp. 113-124
-
-
Lei, Y.1
Han, D.2
Lin, J.3
He, Z.4
-
29
-
-
84872802039
-
Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals
-
Sun, H.; Zi, Y.; He, Z.; Yuan, J.; Wang, X.; Chen, L. Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals. Sensors 2013, 13, 1183–1209. [CrossRef] [PubMed].
-
(2013)
Sensors
, vol.13
, pp. 1183-1209
-
-
Sun, H.1
Zi, Y.2
He, Z.3
Yuan, J.4
Wang, X.5
Chen, L.6
-
30
-
-
84907851741
-
Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis
-
Amarnath, M.; Krishna, I.R.P. Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis. Measurement 2014, 58, 154–164. [CrossRef].
-
(2014)
Measurement
, vol.58
, pp. 154-164
-
-
Amarnath, M.1
Krishna, I.2
-
31
-
-
70350426577
-
Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals
-
Immovilli, F.; Cocconcelli, M.; Bellini, A.; Rubini, R. Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals. IEEE Trans. Ind. Electron. 2009, 56, 4710–4717. [CrossRef].
-
(2009)
IEEE Trans. Ind. Electron
, vol.56
, pp. 4710-4717
-
-
Immovilli, F.1
Cocconcelli, M.2
Bellini, A.3
Rubini, R.4
-
32
-
-
27644587943
-
Monitoring gear vibrations through motor current signature analysis and wavelet transform
-
Kar, C.; Mohanty, A.R. Monitoring gear vibrations through motor current signature analysis and wavelet transform. Mech. Syst. Signal Process. 2006, 20, 158–187. [CrossRef].
-
(2006)
Mech. Syst. Signal Process
, vol.20
, pp. 158-187
-
-
Kar, C.1
Mohanty, A.R.2
-
33
-
-
84870880556
-
Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes
-
Raleigh, NC, USA, 15–20 September
-
Lu, D.; Gong, X.; Qiao, W. Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes. In Proceedings of the Energy Conversion Congress and Exposition, Raleigh, NC, USA, 15–20 September 2012; pp. 3780–3786.
-
(2012)
Roceedings of the Energy Conversion Congress and Exposition
, pp. 3780-3786
-
-
Lu, D.1
Gong, X.2
-
34
-
-
85045286157
-
Contribution of angular measurements to intelligent gear faults diagnosis
-
Fedala, S.; Rémond, D.; Zegadi, R.; Felkaoui, A. Contribution of angular measurements to intelligent gear faults diagnosis. J. Intell. Manuf. 2015. [CrossRef].
-
(2015)
J. Intell. Manuf
-
-
Fedala, S.1
Rémond, D.2
Zegadi, R.3
Felkaoui, A.4
-
35
-
-
84979784023
-
Low speed bearings fault detection and size estimation using instantaneous angular speed
-
Moustafa, W.; Cousinard, O.; Bolaers, F.; Sghir, K.; Dron, J.P. Low speed bearings fault detection and size estimation using instantaneous angular speed. J. Vib. Control 2014, 22, 3413–3425. [CrossRef].
-
(2014)
J. Vib. Control
, vol.22
, pp. 3413-3425
-
-
Moustafa, W.1
Cousinard, O.2
Bolaers, F.3
Sghir, K.4
Dron, J.P.5
-
36
-
-
77649302828
-
Convolutional networks can learn to generate affinity graphs for image segmentation
-
Turaga, S.C.; Murray, J.F.; Jain, V.; Roth, F.; Helmstaedter, M.; Briggman, K.; Denk, W.; Seung, H.S. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 2010, 22, 511–538. [CrossRef] [PubMed].
-
(2010)
Neural Comput
, vol.22
, pp. 511-538
-
-
Turaga, S.C.1
Murray, J.F.2
Jain, V.3
Roth, F.4
Helmstaedter, M.5
Briggman, K.6
Denk, W.7
Seung, H.S.8
-
37
-
-
84946042100
-
Gearbox Fault Identification and Classification with Convolutional Neural Networks
-
Chen, Z.Q.; Li, C.; Sanchez, R.V. Gearbox Fault Identification and Classification with Convolutional Neural Networks. Shock Vib. 2015, 2015, 390134. [CrossRef].
-
(2015)
Shock Vib
, vol.2015
-
-
Chen, Z.Q.1
Li, C.2
Sanchez, R.V.3
-
38
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
Seattle, WA, USA, 27–30 June
-
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Patten Recognition, Seattle, WA, USA, 27–30 June 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Patten Recognition
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
39
-
-
85162384813
-
Algorithms for Hyper-Parameter Optimization
-
Granada, Spain, 12–15 December
-
Bergstra, J.; Bardenet, R.; Kégl, B.; Bengio, Y. Algorithms for Hyper-Parameter Optimization. In Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 2546–2554.
-
(2011)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Kégl, B.3
Bengio, Y.4
-
40
-
-
84957926960
-
A Survey of Randomized Algorithms for Training Neural Networks
-
Zhang, L.; Suganthan, P.N. A Survey of Randomized Algorithms for Training Neural Networks. Inf. Sci. 2016, 364–365, 146–155. [CrossRef].
-
(2016)
Inf. Sci
, vol.364-365
, pp. 146-155
-
-
Zhang, L.1
Suganthan, P.N.2
-
41
-
-
84906214784
-
Exploring Convolutional Neural Network Structures and Optimization Techniques for Speech Recognition
-
Lyon, France, 25–29 August
-
Abdel-Hamid, O.; Li, D.; Dong, Y. Exploring Convolutional Neural Network Structures and Optimization Techniques for Speech Recognition. In Proceedings of the INTERSPEECH, Lyon, France, 25–29 August 2013; pp. 1173–1175.
-
(2013)
Proceedings of the INTERSPEECH
, pp. 1173-1175
-
-
Abdel-Hamid, O.1
Li, D.2
Dong, Y.3
-
42
-
-
85011634438
-
Application of psychoacoustics for gear fault diagnosis using artificial neural network
-
Kane, P.V.; Andhare, A.B. Application of psychoacoustics for gear fault diagnosis using artificial neural network. J. Low Freq. Noise Vib. Act.Control 2016, 35, 207–220. [CrossRef].
-
(2016)
J. Low Freq. Noise Vib. Act.Control
, vol.35
, pp. 207-220
-
-
Kane, P.V.1
Andhare, A.B.2
-
43
-
-
85042913618
-
Gear Fault Diagnosis Based on Angular Measurements and Support Vector Machines in Normal and Nonstationary Conditions
-
Springer: Berlin/Heidelberg, Germany
-
Fedala, S.; Rémond, D.; Zegadi, R.; Felkaoui, A. Gear Fault Diagnosis Based on Angular Measurements and Support Vector Machines in Normal and Nonstationary Conditions. In Condition Monitoring of Machinery in Non-Stationary Operations; Springer: Berlin/Heidelberg, Germany, 2016; pp. 291–308.
-
(2016)
Condition Monitoring of Machinery in Non-Stationary Operations
, pp. 291-308
-
-
Fedala, S.1
Rémond, D.2
Zegadi, R.3
Felkaoui, A.4
-
44
-
-
84975124887
-
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
-
Li, C.; Sánchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Sensors 2016, 16, 895. [CrossRef] [PubMed].
-
(2016)
Sensors
, vol.16
, pp. 895
-
-
Li, C.1
Sánchez, R.V.2
Zurita, G.3
Cerrada, M.4
Cabrera, D.5
-
45
-
-
84891106528
-
Adaptive Feature Extraction and SVM Classification for Real-Time Fault Diagnosis of Drivetrain Gearboxes
-
Denver, CO, USA, 15–19 September
-
Lu, D.; Qiao, W. Adaptive Feature Extraction and SVM Classification for Real-Time Fault Diagnosis of Drivetrain Gearboxes. In Proceedings of the Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 3934–3940.
-
(2013)
Proceedings of the Energy Conversion Congress and Exposition
, pp. 3934-3940
-
-
Lu, D.1
Qiao, W.2
-
46
-
-
27344460283
-
A comparative study of three artificial neural networks for the detection and classification of gear faults
-
Abumahfouz, I.A. A comparative study of three artificial neural networks for the detection and classification of gear faults. Int. J. Gen. Syst. 2005, 34, 261–277. [CrossRef].
-
(2005)
Int. J. Gen. Syst
, vol.34
, pp. 261-277
-
-
Abumahfouz, I.A.1
-
47
-
-
17644392822
-
The measurement of instantaneous angular speed
-
Li, Y.; Gu, F.; Harris, G.; Ball, A.; Bennett, N.; Travis, K. The measurement of instantaneous angular speed. Mech. Syst. Signal Process. 2005, 19, 786–805. [CrossRef].
-
(2005)
Mech. Syst. Signal Process
, vol.19
, pp. 786-805
-
-
Li, Y.1
Gu, F.2
Harris, G.3
Ball, A.4
Bennett, N.5
Travis, K.6
|