메뉴 건너뛰기




Volumn 20, Issue 1, 2014, Pages 272-291

Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations

Author keywords

Multivariate orthogonal space transformations; On line incremental residual analysis; Residual based fault detection; System identification; Vectorized time series models (types of)

Indexed keywords

CONDITION MONITORING; FORECASTING; IDENTIFICATION (CONTROL SYSTEMS); IMPULSE RESPONSE; SENSOR NETWORKS;

EID: 84901627230     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2014.03.006     Document Type: Article
Times cited : (91)

References (56)
  • 1
    • 0031148456 scopus 로고    scopus 로고
    • Trends in the application of model-based fault detection and diagnosis of technical processes
    • DOI 10.1016/S0967-0661(97)00053-1, PII S0967066197000531
    • R. Isermann, and P. Ballé Trends in the application of model-based fault detection and diagnosis of technical processes Control Eng. Pract. 5 5 1997 709 719 (Pubitemid 27414363)
    • (1997) Control Engineering Practice , vol.5 , Issue.5 , pp. 709-719
    • Isermann, R.1    Balle, P.2
  • 4
    • 33745499570 scopus 로고    scopus 로고
    • An approach to model-based fault detection in industrial measurement systems with application to engine test benches
    • DOI 10.1088/0957-0233/17/7/020, PII S0957023306138989, 020
    • P. Angelov, V. Giglio, C. Guardiola, E. Lughofer, and J. Luján An approach to model-based fault detection in industrial measurement systems with application to engine test benches Meas. Sci. Technol. 17 7 2006 1809 1818 (Pubitemid 43958859)
    • (2006) Measurement Science and Technology , vol.17 , Issue.7 , pp. 1809-1818
    • Angelov, P.1    Giglio, V.2    Guardiola, C.3    Lughofer, E.4    Lujan, J.M.5
  • 7
    • 84867336190 scopus 로고    scopus 로고
    • Multisensor data fusion: A review of the state-of-the-art
    • B. Khaleghi, A. Khamis, F.O. Karray, and S.N. Razavi Multisensor data fusion: a review of the state-of-the-art Inf. Fusion 14 1 2013 28 44
    • (2013) Inf. Fusion , vol.14 , Issue.1 , pp. 28-44
    • Khaleghi, B.1    Khamis, A.2    Karray, F.O.3    Razavi, S.N.4
  • 8
    • 70449564477 scopus 로고    scopus 로고
    • On preprocessing multi-channel sensor data for online process monitoring
    • Control and Automation (CIMCA), Vienna, Austria
    • H. Schöener, B. Moser, E. Lughofer, On preprocessing multi-channel sensor data for online process monitoring, in: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA), Vienna, Austria, 2008, pp. 414-419.
    • (2008) Proceedings of the International Conference on Computational Intelligence for Modelling , pp. 414-419
    • Schöener, H.1
  • 9
    • 77955416655 scopus 로고    scopus 로고
    • Arx model-based gearbox fault detection and localization under varying load conditions
    • M. Yang, and V. Makis Arx model-based gearbox fault detection and localization under varying load conditions J. Sound Vib. 329 24 2010 5209 5221
    • (2010) J. Sound Vib. , vol.329 , Issue.24 , pp. 5209-5221
    • Yang, M.1    Makis, V.2
  • 13
    • 77649183581 scopus 로고    scopus 로고
    • Robust fault diagnosis based on nonlinear model of hydraulic gauge control system on rolling mill
    • M. Dong, C. Liu, and G. Li Robust fault diagnosis based on nonlinear model of hydraulic gauge control system on rolling mill IEEE Trans. Control Syst. Technol. 18 2 2010 510 515
    • (2010) IEEE Trans. Control Syst. Technol. , vol.18 , Issue.2 , pp. 510-515
    • Dong, M.1    Liu, C.2    Li, G.3
  • 15
    • 77952828050 scopus 로고    scopus 로고
    • Design of a fault diagnosis system based on a bank of filter-observers with application to a hot rolling mill
    • D. Theilliol, M. Mahfouf, J. Ponsart, D. Sauter, and M. Gama Design of a fault diagnosis system based on a bank of filter-observers with application to a hot rolling mill Trans. Inst. Meas. Control 32 3 2010 265 285
    • (2010) Trans. Inst. Meas. Control , vol.32 , Issue.3 , pp. 265-285
    • Theilliol, D.1    Mahfouf, M.2    Ponsart, J.3    Sauter, D.4    Gama, M.5
  • 18
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Woźniak, M. Graña, and E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion 16 2014 3 17
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Woźniak, M.1    Graña, M.2    Corchado, E.3
  • 19
    • 80053303819 scopus 로고    scopus 로고
    • Self adaptive growing neural network classifier for faults detection and diagnosis
    • M. Barakat, F. Druaux, D. Lefebvre, M. Khalil, and O. Mustapha Self adaptive growing neural network classifier for faults detection and diagnosis Neurocomputing 74 18 2011 3865 3876
    • (2011) Neurocomputing , vol.74 , Issue.18 , pp. 3865-3876
    • Barakat, M.1    Druaux, F.2    Lefebvre, D.3    Khalil, M.4    Mustapha, O.5
  • 21
    • 0347368379 scopus 로고    scopus 로고
    • Modelling for fault detection and isolation versus modelling for control
    • P. Frank, E.A. García, and B. Köppen-Seliger Modelling for fault detection and isolation versus modelling for control Math. Comput. Simul. 53 4-6 2000 259 271
    • (2000) Math. Comput. Simul. , vol.53 , Issue.46 , pp. 259-271
    • Frank, P.1    García, E.A.2    Köppen-Seliger, B.3
  • 22
    • 0003946510 scopus 로고    scopus 로고
    • 2nd ed. Springer Series in Statistics Springer-Verlag New York, USA
    • I. Jolliffe Principal Component Analysis 2nd ed. Springer Series in Statistics 2002 Springer-Verlag New York, USA
    • (2002) Principal Component Analysis
    • Jolliffe, I.1
  • 23
    • 28544443804 scopus 로고    scopus 로고
    • A beginner's guide to partial least squares analysis
    • M. Haenlein, and A. Kaplan A beginner's guide to partial least squares analysis Understanding Stat. 3 4 2004 283 297
    • (2004) Understanding Stat. , vol.3 , Issue.4 , pp. 283-297
    • Haenlein, M.1    Kaplan, A.2
  • 24
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part III: Process history based methods
    • DOI 10.1016/S0098-1354(02)00162-X, PII S009813540200162X
    • V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K. Yin A review of process fault detection and diagnosis: part iii: Process history based methods Comput. Chem. Eng. 27 3 2003 327 346 (Pubitemid 36285964)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.3 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 25
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Trans. Syst. Man Cybern. 15 1 1985 116 132
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 28
    • 44449154319 scopus 로고    scopus 로고
    • Observer and data-driven-model-based fault detection in power plant coal mills
    • DOI 10.1109/TEC.2007.914185
    • P. Odgaard, B. Lin, and S. Jørgensen Observer and data-driven-model-based fault detection in power plant coal mills IEEE Trans. Energy Convers. 23 2 2008 659 668 (Pubitemid 351751821)
    • (2008) IEEE Transactions on Energy Conversion , vol.23 , Issue.2 , pp. 659-668
    • Odgaard, P.F.1    Lin, B.2    Jorgensen, S.B.3
  • 29
    • 72149111135 scopus 로고    scopus 로고
    • Fault detection and diagnosis in process data using one-class support vector machines
    • S. Mahadevan, and S. Shah Fault detection and diagnosis in process data using one-class support vector machines J. Process Control 19 10 2009 1627 1639
    • (2009) J. Process Control , vol.19 , Issue.10 , pp. 1627-1639
    • Mahadevan, S.1    Shah, S.2
  • 31
    • 80053629374 scopus 로고    scopus 로고
    • NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems
    • C. Cernuda, E. Lughofer, W. Maerzinger, and J. Kasberger NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems Chemom. Intell. Lab. Syst. 109 1 2011 22 33
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , Issue.1 , pp. 22-33
    • Cernuda, C.1    Lughofer, E.2    Maerzinger, W.3    Kasberger, J.4
  • 32
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • J. Jackson, and G. Mudholkar Control procedures for residuals associated with principal component analysis Technometrics 21 3 1979 341 349 (Pubitemid 9472204)
    • (1979) Technometrics , vol.21 , Issue.3 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 33
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • DOI 10.1016/j.compchemeng.2006.09.004, PII S0098135406002419
    • M. Tamura, and S. Tsujita A study on the number of principal components and sensitivity of fault detection using PCA Comput. Chem. Eng. 31 9 2007 1035 1046 (Pubitemid 46779125)
    • (2007) Computers and Chemical Engineering , vol.31 , Issue.9 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 34
    • 0001247934 scopus 로고
    • A note on the use of principal components in regression
    • I. Jolliffe A note on the use of principal components in regression J. R. Stat. Soc. Ser. C (Applied Statistics) 31 3 1982 300 303
    • (1982) J. R. Stat. Soc. Ser. C (Applied Statistics) , vol.31 , Issue.3 , pp. 300-303
    • Jolliffe, I.1
  • 35
    • 77950638805 scopus 로고    scopus 로고
    • SparseFIS: Data-driven learning of fuzzy systems with sparsity constraints
    • E. Lughofer, and S. Kindermann SparseFIS: data-driven learning of fuzzy systems with sparsity constraints IEEE Trans. Fuzzy Syst. 18 2 2010 396 411
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.2 , pp. 396-411
    • Lughofer, E.1    Kindermann, S.2
  • 36
    • 80052930921 scopus 로고    scopus 로고
    • On employing fuzzy modeling algorithms for the valuation of residential premises
    • E. Lughofer, B. Trawiński, K. Trawiński, O. Kempa, and T. Lasota On employing fuzzy modeling algorithms for the valuation of residential premises Inf. Sci. 181 23 2011 5123 5142
    • (2011) Inf. Sci. , vol.181 , Issue.23 , pp. 5123-5142
    • Lughofer, E.1    Trawiński, B.2    Trawiński, K.3    Kempa, O.4    Lasota, T.5
  • 37
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C.D. Mol An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math. 57 11 2004 1413 1457 (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 38
    • 79957924482 scopus 로고    scopus 로고
    • Advanced Concepts and Applications Springer-Verlag Berlin Heidelberg, Germany
    • E. Lughofer Evolving Fuzzy Systems - Methodologies Advanced Concepts and Applications 2011 Springer-Verlag Berlin Heidelberg, Germany
    • (2011) Evolving Fuzzy Systems - Methodologies
    • Lughofer, E.1
  • 39
    • 84883213469 scopus 로고    scopus 로고
    • On-line assurance of interpretability criteria in evolving fuzzy systems - Achievements, new concepts and open issues
    • E. Lughofer On-line assurance of interpretability criteria in evolving fuzzy systems - achievements, new concepts and open issues Inf. Sci. 251 2013 22 46
    • (2013) Inf. Sci. , vol.251 , pp. 22-46
    • Lughofer, E.1
  • 40
    • 44449098059 scopus 로고    scopus 로고
    • A semismooth newton method for tikhonov functionals with sparsity constraints
    • R. Griesse, and D. Lorenz A semismooth newton method for tikhonov functionals with sparsity constraints Inverse Probl. 24 3 2008 035007
    • (2008) Inverse Probl. , vol.24 , Issue.3 , pp. 035007
    • Griesse, R.1    Lorenz, D.2
  • 41
  • 42
    • 73049084841 scopus 로고    scopus 로고
    • Geometric properties of partial least squares for process monitoring
    • G. Li, S. Qin, and D. Zhou Geometric properties of partial least squares for process monitoring Automatica 46 1 2010 204 210
    • (2010) Automatica , vol.46 , Issue.1 , pp. 204-210
    • Li, G.1    Qin, S.2    Zhou, D.3
  • 43
    • 84859698661 scopus 로고    scopus 로고
    • A PLS-based statistical approach for fault detection and isolation of robotic manipulators
    • R. Muradore, and P. Fiorini A PLS-based statistical approach for fault detection and isolation of robotic manipulators IEEE Trans. Ind. Electron. 59 8 2012 3167 3175
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , Issue.8 , pp. 3167-3175
    • Muradore, R.1    Fiorini, P.2
  • 44
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • DOI 10.1016/S0967-0661(02)00096-5, PII S0967066102000965
    • X. Wang, U. Kruger, and B. Lennox Recursive partial least squares algorithms for monitoring complex industrial processes Control Eng. Pract. 11 6 2003 613 632 (Pubitemid 36777464)
    • (2003) Control Engineering Practice , vol.11 , Issue.6 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 47
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • P. Angelov, E. Lughofer, and X. Zhou Evolving fuzzy classifiers using different model architectures Fuzzy Sets Syst. 159 23 2008 3160 3182
    • (2008) Fuzzy Sets Syst. , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.1    Lughofer, E.2    Zhou, X.3
  • 48
  • 49
    • 0037080263 scopus 로고    scopus 로고
    • Some fundamental considerations for the control of residual flatness in tension levelling
    • DOI 10.1016/S0924-0136(01)01175-X, PII S092401360101175X
    • J. Morris, S. Hardy, and J. Thomas Some fundamental considerations for the control of residual flatness in tension levelling J. Mater. Processing Technol. 120 1-3 2002 385 396 (Pubitemid 34069999)
    • (2002) Journal of Materials Processing Technology , vol.120 , Issue.1-3 , pp. 385-396
    • Morris, J.W.1    Hardy, S.J.2    Thomas, J.T.3
  • 51
    • 78751619797 scopus 로고    scopus 로고
    • Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems
    • E. Lughofer, V. Macián, C. Guardiola, and E. Klement Identifying static and dynamic prediction models for NOx emissions with evolving fuzzy systems Appl. Soft Comput. 11 2 2011 2487 2500
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2487-2500
    • Lughofer, E.1    Macián, V.2    Guardiola, C.3    Klement, E.4
  • 53
    • 85096855936 scopus 로고    scopus 로고
    • One-Class SVMs for document classification
    • L. Manevitz, and M. Yousef One-Class SVMs for document classification J. Mach. Learn. Res. 2 2001 139 154
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 139-154
    • Manevitz, L.1    Yousef, M.2
  • 54
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 10 2010 2044 2064
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 55
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman The use of ranks to avoid the assumption of normality implicit in the analysis of variance J. Am. Stat. Assoc. 32 200 1937 675 701
    • (1937) J. Am. Stat. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.