메뉴 건너뛰기




Volumn 91, Issue 3, 2017, Pages 281-289

Toward deterministic and semiautomated SPADE analysis

Author keywords

deterministic; SPADE

Indexed keywords

ALGORITHM; CLUSTER ANALYSIS; FLOW CYTOMETRY; GENETIC HETEROGENEITY; HUMAN; PROCEDURES; SOFTWARE; STATISTICS AND NUMERICAL DATA;

EID: 85013630377     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.23068     Document Type: Article
Times cited : (26)

References (40)
  • 1
    • 3543069879 scopus 로고    scopus 로고
    • Seventeen-colour flow cytometry: Unravelling the immune system
    • Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: Unravelling the immune system. Nat Rev Immunol 2004;4:648–655.
    • (2004) Nat Rev Immunol , vol.4 , pp. 648-655
    • Perfetto, S.P.1    Chattopadhyay, P.K.2    Roederer, M.3
  • 2
    • 55449095864 scopus 로고    scopus 로고
    • A chromatic explosion: The development and future of multiparameter flow cytometry
    • Chattopadhyay PK, Hogerkorp CM, Roederer M. A chromatic explosion: The development and future of multiparameter flow cytometry. Immunology 2008;125:441–449.
    • (2008) Immunology , vol.125 , pp. 441-449
    • Chattopadhyay, P.K.1    Hogerkorp, C.M.2    Roederer, M.3
  • 7
    • 0142185336 scopus 로고    scopus 로고
    • Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation
    • Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281(1-2):65–78.
    • (2003) J Immunol Methods. , vol.281 , Issue.1-2 , pp. 65-78
    • Betts, M.R.1    Brenchley, J.M.2    Price, D.A.3    De Rosa, S.C.4    Douek, D.C.5    Roederer, M.6    Koup, R.A.7
  • 8
    • 84932194441 scopus 로고    scopus 로고
    • Computational prediction of manually gated rare cells in flow cytometry data
    • Qiu P. Computational prediction of manually gated rare cells in flow cytometry data. Cytometry Part A 2015;87A:594–602.
    • (2015) Cytometry Part A , vol.87A , pp. 594-602
    • Qiu, P.1
  • 10
    • 84861477707 scopus 로고    scopus 로고
    • Inferring phenotypic properties from single-cell characteristics
    • Qiu P. Inferring phenotypic properties from single-cell characteristics. PLoS One 2012;7:e37038.
    • (2012) PLoS One , vol.7
    • Qiu, P.1
  • 15
    • 0022262848 scopus 로고
    • Automated identification of subpopulations in flow cytometric list mode data using cluster analysis
    • Murphy RF. Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry 1985;6:302–309.
    • (1985) Cytometry , vol.6 , pp. 302-309
    • Murphy, R.F.1
  • 16
    • 78650436333 scopus 로고    scopus 로고
    • Rapid cell population identification in flow cytometry data
    • Part
    • Aghaeepour N, Nikolic R, Hoos H, RR B. Rapid cell population identification in flow cytometry data. Cytometry Part A 2011;79A:6–13.
    • (2011) Cytometry , vol.79A , pp. 6-13
    • Aghaeepour, N.1    Nikolic, R.2    Hoos, H.3    Rr, B.4
  • 17
    • 84865139571 scopus 로고    scopus 로고
    • flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding
    • Ge Y, Sealfon SC. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics. 2012;28(15):2052–2058.
    • (2012) Bioinformatics. , vol.28 , Issue.15 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 18
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo K, Brinkman R, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry Part A 2008;73A:321–332.
    • (2008) Cytometry Part A , vol.73A , pp. 321-332
    • Lo, K.1    Brinkman, R.2    Gottardo, R.3
  • 19
    • 42949083636 scopus 로고    scopus 로고
    • Mixture modeling approach to flow cytometry data
    • Boedigheimer M, Ferbas J. Mixture modeling approach to flow cytometry data. Cytometry Part A 2008;73A:421–429.
    • (2008) Cytometry Part A , vol.73A , pp. 421-429
    • Boedigheimer, M.1    Ferbas, J.2
  • 20
    • 48849105886 scopus 로고    scopus 로고
    • Statistical mixture modeling for cell subtype identification in flow cytometry
    • Part
    • Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry Part A 2008;73(8):693–701
    • (2008) Cytometry , vol.73 , Issue.8 , pp. 693-701
    • Chan, C.1    Feng, F.2    Ottinger, J.3    Foster, D.4    West, M.5    Kepler, T.B.6
  • 24
    • 77949564197 scopus 로고    scopus 로고
    • The curvHDR method for gating flow cytometry samples
    • Naumann U, Luta G, Wand M. The curvHDR method for gating flow cytometry samples. BMC Bioinformatics. 2010;11:44.
    • (2010) BMC Bioinformatics. , vol.11 , pp. 44
    • Naumann, U.1    Luta, G.2    Wand, M.3
  • 25
    • 77957550165 scopus 로고    scopus 로고
    • Misty Mountain clustering: application to fast unsupervised flow cytometry gating
    • Sugár I, Sealfon S. Misty Mountain clustering: application to fast unsupervised flow cytometry gating. BMC Bioinformatics. 2010;11:502.
    • (2010) BMC Bioinformatics. , vol.11 , pp. 502
    • Sugár, I.1    Sealfon, S.2
  • 26
    • 84899064968 scopus 로고    scopus 로고
    • SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design
    • Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design. Cytometry A 2014;85:408–421.
    • (2014) Cytometry A , vol.85 , pp. 408-421
    • Naim, I.1    Datta, S.2    Rebhahn, J.3    Cavenaugh, J.S.4    Mosmann, T.R.5    Sharma, G.6
  • 27
    • 84899129003 scopus 로고    scopus 로고
    • SWIFT - scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation
    • Mosmann TR, Naim I, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM, Sharma G. SWIFT - scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation. Cytometry Part A 2014;85:422–433.
    • (2014) Cytometry Part A , vol.85 , pp. 422-433
    • Mosmann, T.R.1    Naim, I.2    Rebhahn, J.3    Datta, S.4    Cavenaugh, J.S.5    Weaver, J.M.6    Sharma, G.7
  • 28
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare H, Shooshtari P, Gupta A, Brinkman R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 2010;11:403.
    • (2010) BMC Bioinformatics , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.4
  • 30
    • 84874666550 scopus 로고    scopus 로고
    • Critical assessment of automated flow cytometry data analysis techniques
    • FlowCAP Consortium; DREAM Consortiu
    • Aghaeepour N, Finak G; FlowCAP Consortium; DREAM Consortium, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 2013;10(3):228–38.
    • (2013) Nat Methods , vol.10 , Issue.3 , pp. 228-238
    • Aghaeepour, N.1    Finak, G.2    Hoos, H.3    Mosmann, T.R.4    Brinkman, R.5    Gottardo, R.6    Scheuermann, R.H.7
  • 33
    • 16244421048 scopus 로고    scopus 로고
    • A deterministic method for initializing, k, -means clustering. In 16th IEEE International Conference on Tools with Artificial Intelligence, 2004 (ICTAI 2004). IEEE; 2004
    • Su T, Dy J. A deterministic method for initializing k-means clustering. In: 16th IEEE International Conference on Tools with Artificial Intelligence, 2004 (ICTAI 2004). IEEE; 2004. pp. 784–786.
    • Su, T.1    Dy, J.2
  • 35
    • 77954197414 scopus 로고    scopus 로고
    • Web-based analysis and publication of flow cytometry experiments
    • Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom 2010;53:1–10.
    • (2010) Curr Protoc Cytom , vol.53 , pp. 1-10
    • Kotecha, N.1    Krutzik, P.O.2    Irish, J.M.3
  • 36
    • 0002726668 scopus 로고
    • On the history of the minimum spanning tree problem
    • Graham RL, Hell P. On the history of the minimum spanning tree problem. Ann Hist Comput 1985;7:43–57.
    • (1985) Ann Hist Comput , vol.7 , pp. 43-57
    • Graham, R.L.1    Hell, P.2
  • 40
    • 84983121572 scopus 로고    scopus 로고
    • Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data
    • Diggins KE, Ferrell PB, Irish JM. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 2015;82:55–63.
    • (2015) Methods , vol.82 , pp. 55-63
    • Diggins, K.E.1    Ferrell, P.B.2    Irish, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.