메뉴 건너뛰기




Volumn 10, Issue 3, 2013, Pages 228-238

Critical assessment of automated flow cytometry data analysis techniques

(94)  Aghaeepour, Nima a   Finak, Greg b   Hoos, Holger c   Mosmann, Tim R d   Brinkman, Ryan a   Gottardo, Raphael b   Scheuermann, Richard H e   Dougall, David f,g   Khodabakhshi, Alireza Hadj h   Mah, Phillip c   Obermoser, Gerlinde i   Spidlen, Josef a   Taylor, Ian j   Wuensch, Sherry A d   Bramson, Jonathan k   Eaves, Connie l   Weng, Andrew P l   Fortuno III, Edgardo S m   Ho, Kevin m   Kollmann, Tobias R m   more..


Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; AUTOMATION; CELL POPULATION; FLOW CYTOMETRY; HUMAN; PRIORITY JOURNAL; PRODUCT RECALL; T LYMPHOCYTE SUBPOPULATION; ALGORITHM; ANIMAL; BIOLOGY; BLOOD; CLUSTER ANALYSIS; COMPUTER PROGRAM; GRAFT VERSUS HOST REACTION; IMAGE PROCESSING; LARGE CELL LYMPHOMA; MONONUCLEAR CELL; PATHOLOGY; PROCEDURES; REPRODUCIBILITY; SENSITIVITY AND SPECIFICITY; STANDARDS; STATISTICAL ANALYSIS; STATISTICS AND NUMERICAL DATA; VIROLOGY; WEST NILE FEVER; ACUTE GRANULOCYTIC LEUKEMIA; ALLOTYPE; CANCER CLASSIFICATION; GRANULOCYTE; HEMATOPOIETIC STEM CELL TRANSPLANTATION; HUMAN IMMUNODEFICIENCY VIRUS; MATURITY; MONOCYTE; PHENOTYPE; PREDICTION; WEST NILE FLAVIVIRUS; WORKFLOW;

EID: 84874666550     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/NMETH.2365     Document Type: Article
Times cited : (491)

References (48)
  • 1
    • 0034699507 scopus 로고    scopus 로고
    • A practical approach to multicolor flow cytometry for immunophenotyping
    • Baumgarth, N. & Roederer, M. A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods 243, 77-97 ( 2000).
    • (2000) J. Immunol. Methods , vol.243 , pp. 77-97
    • Baumgarth, N.1    Roederer, M.2
  • 2
    • 57749111489 scopus 로고    scopus 로고
    • Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay
    • Tanner, S.D. et al. Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl. Chem. 80, 2627-2641 ( 2008).
    • (2008) Pure Appl. Chem. , vol.80 , pp. 2627-2641
    • Tanner, S.D.1
  • 4
    • 84856278095 scopus 로고    scopus 로고
    • Cytometry by time-of-flight shows combinatorial cytokine expression and virusspecific cell niches within a continuum of CD8+ T cell phenotypes
    • Newell, E.W., Sigal, N., Bendall, S.C, Nolan, G.P. & Davis, M.M. Cytometry by time-of-flight shows combinatorial cytokine expression and virusspecific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36, 142-152 ( 2012).
    • (2012) Immunity , vol.36 , pp. 142-152
    • Newell, E.W.1    Sigal, N.2    Bendall, S.C.3    Nolan, G.P.4    Davis, M.M.5
  • 5
    • 77954250303 scopus 로고    scopus 로고
    • Data analysis in flow cytometry: The future just started
    • Lugli, E., Roederer, M. & Cossarizza, A. Data analysis in flow cytometry: The future just started. Cytometry A 77, 705-713 ( 2010).
    • (2010) Cytometry A , vol.77 , pp. 705-713
    • Lugli, E.1    Roederer, M.2    Cossarizza, A.3
  • 6
    • 34547700296 scopus 로고    scopus 로고
    • A statistical pattern recognition approach for determining cellular viability and lineage phenotype in cultured cells and murine bone marrow
    • Quinn, J. et al. A statistical pattern recognition approach for determining cellular viability and lineage phenotype in cultured cells and murine bone marrow. Cytometry A 71, 612-624 ( 2007).
    • (2007) Cytometry A , vol.71 , pp. 612-624
    • Quinn, J.1
  • 7
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo, K., Brinkman, R.R. & Gottardo, R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry A 73, 321-332 ( 2008).
    • (2008) Cytometry A , vol.73 , pp. 321-332
    • Lo, K.1    Brinkman, R.R.2    Gottardo, R.3
  • 8
    • 77949555869 scopus 로고    scopus 로고
    • Merging mixture components for cell population identification in flow cytometry
    • Finak, G., Bashashati, A., Brinkman, R. & Gottardo, R. Merging mixture components for cell population identification in flow cytometry. Adv. Bioinformatics 2009, 247646 ( 2009).
    • (2009) Adv. Bioinformatics , vol.2009 , pp. 247646
    • Finak, G.1    Bashashati, A.2    Brinkman, R.3    Gottardo, R.4
  • 9
    • 66649115648 scopus 로고    scopus 로고
    • Automated high-dimensional flow cytometric data analysis
    • Pyne, S. et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA 106, 8519-8524 ( 2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 8519-8524
    • Pyne, S.1
  • 10
    • 77949564197 scopus 로고    scopus 로고
    • The curvHDR method for gating flow cytometry samples
    • Naumann, U., Luta, G. & Wand, M.P. The curvHDR method for gating flow cytometry samples. BMC Bioinformatics 11, 44 ( 2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 44
    • Naumann, U.1    Luta, G.2    Wand, M.P.3
  • 11
    • 77955516707 scopus 로고    scopus 로고
    • Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures
    • Suchard, M.A. et al. Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures. J. Comput. Graph. Stat. 19, 419-438 ( 2010).
    • (2010) J. Comput. Graph. Stat. , vol.19 , pp. 419-438
    • Suchard, M.A.1
  • 12
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare, H., Shooshtari, P., Gupta, A. & Brinkman, R.R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11, 403 ( 2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.R.4
  • 13
    • 77956565464 scopus 로고    scopus 로고
    • Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
    • Qian, Y. et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin. Cytom. 78 ( suppl. 1), S69-S82 ( 2010).
    • (2010) Cytometry B Clin. Cytom. , vol.78 , Issue.SUPPL. 1
    • Qian, Y.1
  • 14
    • 77957550165 scopus 로고    scopus 로고
    • Misty Mountain clustering: Application to fast unsupervised flow cytometry gating
    • Sugar, I.P. & Sealfon, S.C. Misty Mountain clustering: Application to fast unsupervised flow cytometry gating. BMC Bioinformatics 11, 502 ( 2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 502
    • Sugar, I.P.1    Sealfon, S.C.2
  • 15
    • 78650436333 scopus 로고    scopus 로고
    • Rapid cell population identification in flow cytometry data
    • Aghaeepour, N., Nikolic, R., Hoos, H.H. & Brinkman, R.R. Rapid cell population identification in flow cytometry data. Cytometry A 79, 6-13 ( 2011).
    • (2011) Cytometry A , vol.79 , pp. 6-13
    • Aghaeepour, N.1    Nikolic, R.2    Hoos, H.H.3    Brinkman, R.R.4
  • 16
    • 84865139571 scopus 로고    scopus 로고
    • FlowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding
    • Ge, Y. & Sealfon, S.C. flowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 28, 2052-2058 ( 2012).
    • (2012) Bioinformatics , vol.28 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 17
    • 84859246989 scopus 로고    scopus 로고
    • Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays
    • Aghaeepour, N. et al. Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28, 1009-1016 ( 2012).
    • (2012) Bioinformatics , vol.28 , pp. 1009-1016
    • Aghaeepour, N.1
  • 18
    • 84855257738 scopus 로고    scopus 로고
    • Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma
    • Zare, H. et al. Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma. Am. J. Clin. Pathol. 137, 75-85 ( 2012).
    • (2012) Am. J. Clin. Pathol. , vol.137 , pp. 75-85
    • Zare, H.1
  • 19
    • 78149465908 scopus 로고    scopus 로고
    • Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: A step forward in the standardization of clinical immunophenotyping
    • Costa, E.S. et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: A step forward in the standardization of clinical immunophenotyping. Leukemia 24, 1927-1933 ( 2010).
    • (2010) Leukemia , vol.24 , pp. 1927-1933
    • Costa, E.S.1
  • 20
    • 79251515158 scopus 로고    scopus 로고
    • SPICE: Exploration and analysis of post-cytometric complex multivariate datasets
    • Roederer, M., Nozzi, J.L. & Nason, M.C. SPICE: Exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A 79, 167-174 ( 2011).
    • (2011) Cytometry A , vol.79 , pp. 167-174
    • Roederer, M.1    Nozzi, J.L.2    Nason, M.C.3
  • 21
    • 84867434558 scopus 로고    scopus 로고
    • Matching phosphorylation response patterns of antigen-receptor-stimulated T cells via flow cytometry
    • Azad, A., Pyne, S. & Pothen, A. Matching phosphorylation response patterns of antigen-receptor-stimulated T cells via flow cytometry. BMC Bioinformatics 13, S10 ( 2012).
    • (2012) BMC Bioinformatics , vol.13
    • Azad, A.1    Pyne, S.2    Pothen, A.3
  • 22
    • 79955750055 scopus 로고    scopus 로고
    • Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
    • Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687-696 ( 2011).
    • (2011) Science , vol.332 , pp. 687-696
    • Bendall, S.C.1
  • 23
    • 80054768631 scopus 로고    scopus 로고
    • Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
    • Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886-891 ( 2011).
    • (2011) Nat. Biotechnol. , vol.29 , pp. 886-891
    • Qiu, P.1
  • 24
    • 84869866192 scopus 로고    scopus 로고
    • RchyOptimyx: Cellular hierarchy optimization for flow cytometry
    • Aghaeepour, N. et al. RchyOptimyx: Cellular hierarchy optimization for flow cytometry. Cytometry A 81, 1022-1030 ( 2012).
    • (2012) Cytometry A , vol.81 , pp. 1022-1030
    • Aghaeepour, N.1
  • 25
    • 48849105886 scopus 로고    scopus 로고
    • Statistical mixture modeling for cell subtype identification in flow cytometry
    • Chan, C. et al. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry A 73, 693-701 ( 2008).
    • (2008) Cytometry a , vol.73 , pp. 693-701
    • Chan, C.1
  • 26
    • 84892936478 scopus 로고    scopus 로고
    • 2 discrepancy framework to mine high-throughput screening data for targeted drug discovery: Application to AIDS antiviral activity data of the National Cancer Institute
    • 2 discrepancy framework to mine high-throughput screening data for targeted drug discovery: Application to AIDS antiviral activity data of the National Cancer Institute. ( Data Mining for Biomedical Informatics workshop, SIAM Conf. Data Mining 2006).
    • (2006) Data Mining for Biomedical Informatics Workshop, SIAM Conf. Data Mining
    • El Khettabi, F.1    Kyriakidis, P.2
  • 27
    • 78049372728 scopus 로고    scopus 로고
    • Swift: Scalable weighted iterative sampling for flow cytometry clustering
    • IEEE
    • Naim, I. et al. Swift: Scalable weighted iterative sampling for flow cytometry clustering, in Acoustics Speech and Signal Processing 509-512 ( IEEE, 2010).
    • (2010) Acoustics Speech and Signal Processing , pp. 509-512
    • Naim, I.1
  • 28
    • 65949097067 scopus 로고    scopus 로고
    • FlowCore: A Bioconductor package for high throughput flow cytometry
    • Hahne, F. et al. flowCore: A Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10, 106 ( 2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 106
    • Hahne, F.1
  • 30
    • 26444448037 scopus 로고    scopus 로고
    • Standardization of cytokine flow cytometry assays
    • Maecker, H.T. et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 6, 13 ( 2005).
    • (2005) BMC Immunol. , vol.6 , pp. 13
    • Maecker, H.T.1
  • 31
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: The DREAM3 challenges
    • Prill, R.J. et al. Towards a rigorous assessment of systems biology models: The DREAM3 challenges. PLoS ONE 5, e9202 ( 2010).
    • (2010) PLoS ONE , vol.5
    • Prill, R.J.1
  • 33
    • 80052730617 scopus 로고    scopus 로고
    • Verification of systems biology research in the age of collaborative competition
    • Meyer, P. et al. Verification of systems biology research in the age of collaborative competition. Nat Biotechnol. 29, 811-815 ( 2011).
    • (2011) Nat Biotechnol. , vol.29 , pp. 811-815
    • Meyer, P.1
  • 34
    • 84856726059 scopus 로고    scopus 로고
    • Preface: RECOMB systems biology, regulatory genomics, and DREAM 2011 special issue
    • Califano, A., Kellis, M. & Stolovitzky, G. Preface: RECOMB systems biology, regulatory genomics, and DREAM 2011 special issue. J. Comput. Biol. 19, 101 ( 2012).
    • (2012) J. Comput. Biol. , vol.19 , pp. 101
    • Califano, A.1    Kellis, M.2    Stolovitzky, G.3
  • 36
    • 0021023450 scopus 로고
    • Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: A subgroup with poor response to therapy
    • Maddox, A.M. et al. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: A subgroup with poor response to therapy. Leuk. Res. 7, 509-522 ( 1983).
    • (1983) Leuk. Res. , vol.7 , pp. 509-522
    • Maddox, A.M.1
  • 37
    • 0032900688 scopus 로고    scopus 로고
    • Acute myeloblastic leukemia (MO) with an unusual chromosomal abnormality: Translocation (1;14) (pl3;q32)
    • Tecimer, C., Loy, B.A. & Martin, A.W. Acute myeloblastic leukemia (MO) with an unusual chromosomal abnormality: Translocation (1;14) (pl3;q32). Cancer Genet. Cytogenet. 111, 175-177 ( 1999).
    • (1999) Cancer Genet. Cytogenet. , vol.111 , pp. 175-177
    • Tecimer, C.1    Loy, B.A.2    Martin, A.W.3
  • 38
    • 79251602722 scopus 로고    scopus 로고
    • Multiparameter flow cytometry in the diagnosis and management of acute leukemia
    • Peters, J.M. & Ansari, M.Q. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch. Pathol. Lab. Med. 135, 44-54 ( 2011).
    • (2011) Arch. Pathol. Lab. Med. , vol.135 , pp. 44-54
    • Peters, J.M.1    Ansari, M.Q.2
  • 39
    • 84879581744 scopus 로고    scopus 로고
    • Hard and soft Euclidean consensus partitions
    • Preisach, C., Burkhardt, H., Schmidt-Thieme, L. & Decker, R. Springer
    • Hornik, K. & Böhm, W. Hard and soft Euclidean consensus partitions, in Data Analysis, Machine Learning and Applications (eds. Preisach, C., Burkhardt, H., Schmidt-Thieme, L. & Decker, R.) 147-154 ( Springer, 2008).
    • (2008) Data Analysis, Machine Learning and Applications , pp. 147-154
    • Hornik, K.1    Böhm, W.2
  • 40
    • 27544491443 scopus 로고    scopus 로고
    • A clue for cluster ensembles
    • Hornik, K. A clue for cluster ensembles. J. Stat Softw. 14, 1-25 ( 2005).
    • (2005) J. Stat Softw. , vol.14 , pp. 1-25
    • Hornik, K.1
  • 42
    • 53049110682 scopus 로고    scopus 로고
    • MIFlowCyt: The minimum information about a flow cytometry experiment
    • Lee, J.A. et al. MIFlowCyt: The minimum information about a flow cytometry experiment. Cytometry A 73, 926-930 ( 2008).
    • (2008) Cytometry A , vol.73 , pp. 926-930
    • Lee, J.A.1
  • 43
    • 34248652720 scopus 로고    scopus 로고
    • High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease
    • Brinkman, R.R. et al. High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. Biol. Blood Marrow Transplant. 6, 691-700 ( 2007).
    • (2007) Biol. Blood Marrow Transplant. , vol.6 , pp. 691-700
    • Brinkman, R.R.1
  • 46
    • 0036763046 scopus 로고    scopus 로고
    • Rank ordering engineering designs: Pairwise comparison charts and Borda counts
    • Dym, CL., Wood, W.H. & Scott, M.J. Rank ordering engineering designs: Pairwise comparison charts and Borda counts. Res. Eng. Des. 13, 236-242 ( 2002).
    • (2002) Res. Eng. Des. , vol.13 , pp. 236-242
    • Dym, C.L.1    Wood, W.H.2    Scott, M.J.3
  • 47
    • 26444448037 scopus 로고    scopus 로고
    • Standardization of cytokine flow cytometry assays
    • Maecker, H.T. et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 6, 13 ( 2005).
    • (2005) BMC Immunol. , vol.6 , pp. 13
    • Maecker, H.T.1
  • 48
    • 84857647499 scopus 로고    scopus 로고
    • Standardizing immunophenotyping for the human immunology project
    • Maecker, H.T., McCoy, J.P. & Nussenblatt, R. Standardizing immunophenotyping for the human immunology project. Nat Rev. Immunol. 12, 191-200 ( 2012).
    • (2012) Nat Rev. Immunol. , vol.12 , pp. 191-200
    • Maecker, H.T.1    McCoy, J.P.2    Nussenblatt, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.