메뉴 건너뛰기




Volumn 73, Issue 5, 2008, Pages 421-429

Mixture modeling approach to flow cytometry data

Author keywords

Automated data analysis; Flow cytometry; Gaussian mixture modeling; Immunophenotyping

Indexed keywords

ALGORITHM; ANALYTIC METHOD; ARTICLE; AUTOMATION; B LYMPHOCYTE; BIOINFORMATICS; CELL SUSPENSION; CLINICAL ARTICLE; CONTROLLED STUDY; FLOW CYTOMETRY; FLUORESCENCE ANGIOGRAPHY; HUMAN; HUMAN CELL; PRIORITY JOURNAL; SYSTEMIC LUPUS ERYTHEMATOSUS; TECHNIQUE;

EID: 42949083636     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.20553     Document Type: Article
Times cited : (78)

References (24)
  • 2
    • 0029874250 scopus 로고    scopus 로고
    • Use of CD45 fluorescence and side-scatter characteristics for gating lymphocytes when using the whole blood lysis procedure and flow cytometry
    • Nicholson JK, Hubbbar M, Jones BM. Use of CD45 fluorescence and side-scatter characteristics for gating lymphocytes when using the whole blood lysis procedure and flow cytometry. Cytometry 1996;26:16-21.
    • (1996) Cytometry , vol.26 , pp. 16-21
    • Nicholson, J.K.1    Hubbbar, M.2    Jones, B.M.3
  • 3
    • 0027512897 scopus 로고
    • Evaluation of dual-color flow cytometry immunophenotyping panel in multicenter quality assurance program
    • Schenker EL, Hultin LE, Bauer KD, Ferbas J, Margolick JB, Giorgi JV. Evaluation of dual-color flow cytometry immunophenotyping panel in multicenter quality assurance program. Cytometry 1993;14:307-317.
    • (1993) Cytometry , vol.14 , pp. 307-317
    • Schenker, E.L.1    Hultin, L.E.2    Bauer, K.D.3    Ferbas, J.4    Margolick, J.B.5    Giorgi, J.V.6
  • 4
    • 0035126095 scopus 로고    scopus 로고
    • 11-color, 13-parameter flow cytometry: Identification of human naive T cells by phenotype, function, and T-cell receptor diversity
    • Rosa SCD, Herzenberg LA, Herzenberg LA, Roederer M. 11-color, 13-parameter flow cytometry: Identification of human naive T cells by phenotype, function, and T-cell receptor diversity Nat Med 2001;7:245-248.
    • (2001) Nat Med , vol.7 , pp. 245-248
    • Rosa, S.C.D.1    Herzenberg, L.A.2    Herzenberg, L.A.3    Roederer, M.4
  • 8
    • 0035227261 scopus 로고    scopus 로고
    • Preparation of cells from blood
    • Darzynkiewicz Z, Robinson JP, Crissman HA, editors, 3rd ed. San Diego: Academic Press;
    • McCoy JP. Preparation of cells from blood. In: Darzynkiewicz Z, Robinson JP, Crissman HA, editors. Methods in Cell Biology, 3rd ed. San Diego: Academic Press; 2001. p 214.
    • (2001) Methods in Cell Biology , pp. 214
    • McCoy, J.P.1
  • 11
    • 0002629270 scopus 로고    scopus 로고
    • Maximum likelihood from incomplete data via the EM-algorithm
    • Dempster NMLAP, Rubin DB. Maximum likelihood from incomplete data via the EM-algorithm. J R Stat Soc B 1997;39:1-38.
    • (1997) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, N.M.L.A.P.1    Rubin, D.B.2
  • 12
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for Gaussian mixture learning
    • Vlassis N, Likas A. A greedy EM algorithm for Gaussian mixture learning. Neural Process Lett 2002;15:77-87.
    • (2002) Neural Process Lett , vol.15 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 13
    • 0025278511 scopus 로고
    • Establishing optimal lymphocyte gates for immunophenotyping by flow cytometry
    • Loken MR, Brosnan JM, Bach BA, Ault KA. Establishing optimal lymphocyte gates for immunophenotyping by flow cytometry. Cytometry 1990;11:453-459.
    • (1990) Cytometry , vol.11 , pp. 453-459
    • Loken, M.R.1    Brosnan, J.M.2    Bach, B.A.3    Ault, K.A.4
  • 14
    • 33745214264 scopus 로고    scopus 로고
    • A new automated flow cytometry data analysis approach for the diagnostic screening of neoplastic B-cell disorders in peripheral blood samples with absolute lymphocytosis
    • Costa ES, Arroyo ME, Pedreira CE, Garcia-Marcos MA, Tabernero MD, Almeida J, Orfao A. A new automated flow cytometry data analysis approach for the diagnostic screening of neoplastic B-cell disorders in peripheral blood samples with absolute lymphocytosis. Leukemia 2006;20:1221-1230.
    • (2006) Leukemia , vol.20 , pp. 1221-1230
    • Costa, E.S.1    Arroyo, M.E.2    Pedreira, C.E.3    Garcia-Marcos, M.A.4    Tabernero, M.D.5    Almeida, J.6    Orfao, A.7
  • 15
    • 1542637559 scopus 로고    scopus 로고
    • SiZer for exploration of structures of curves
    • Chaudhuri P, Marron J. SiZer for exploration of structures of curves. J Acoust Soc Am 1999;94:807-823.
    • (1999) J Acoust Soc Am , vol.94 , pp. 807-823
    • Chaudhuri, P.1    Marron, J.2
  • 17
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box GEP, Cox DR. An analysis of transformations. J R Stat Soc B 1964;26:211-252.
    • (1964) J R Stat Soc B , vol.26 , pp. 211-252
    • Box, G.E.P.1    Cox, D.R.2
  • 18
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu L, Jordan MI. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Comput 1996;8:129-151.
    • (1996) Neural Comput , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 19
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki C, Celeux G, Govaert G. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal 2003;41:561-575.
    • (2003) Comput Stat Data Anal , vol.41 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 21
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of Gaussian mixture models
    • Verbeek JJ, Vlassis N, Kröse BJA. Efficient greedy learning of Gaussian mixture models. Neural Comput 2003;15:469-485.
    • (2003) Neural Comput , vol.15 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Kröse, B.J.A.3
  • 24
    • 0036718703 scopus 로고    scopus 로고
    • Mixture of experts classification using a hierarchical mixture model
    • Titsias MK, Likas A. Mixture of experts classification using a hierarchical mixture model. Neural Comput 2002;14:2221-2244.
    • (2002) Neural Comput , vol.14 , pp. 2221-2244
    • Titsias, M.K.1    Likas, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.