메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Misty Mountain clustering: Application to fast unsupervised flow cytometry gating

Author keywords

[No Author keywords available]

Indexed keywords

AFFINITY PROPAGATION; AUTOMATED FLOW CYTOMETRY; COMPUTATIONAL BIOLOGY; MODEL BASED APPROACH; MODEL-BASED CLUSTERING; MULTI-DIMENSIONAL DATASETS; MULTIDIMENSIONAL CLUSTERING; OPTIMAL CLUSTER NUMBER;

EID: 77957550165     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-502     Document Type: Article
Times cited : (27)

References (46)
  • 2
    • 0017477973 scopus 로고
    • Location of bank accounts to optimize float - Analytic study of exact and approximate algorithms
    • Cornuejols G, Fisher ML, Nemhauser GL. Location of bank accounts to optimize float - Analytic study of exact and approximate algorithms. Management Science 1977, 23(8):789-810.
    • (1977) Management Science , vol.23 , Issue.8 , pp. 789-810
    • Cornuejols, G.1    Fisher, M.L.2    Nemhauser, G.L.3
  • 4
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • 10.1126/science.1136800, 17218491
    • Frey BJ, Dueck D. Clustering by passing messages between data points. Science 2007, 315(5814):972-976. 10.1126/science.1136800, 17218491.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 6
    • 0001350119 scopus 로고
    • Algebraic connectivity of graphs
    • Fiedler M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 1973, 23(2):298-305.
    • (1973) Czechoslovak Mathematical Journal , vol.23 , Issue.2 , pp. 298-305
    • Fiedler, M.1
  • 7
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of coexpressed genes
    • 10.1101/gr.9.11.1106, 310826, 10568750
    • Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Research 1999, 9(11):1106-1115. 10.1101/gr.9.11.1106, 310826, 10568750.
    • (1999) Genome Research , vol.9 , Issue.11 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 8
    • 0004185151 scopus 로고
    • Clustering Algorithms
    • New York, Wiley & Sons
    • Hartigan JA. Clustering Algorithms. 1975, New York, Wiley & Sons.
    • (1975)
    • Hartigan, J.A.1
  • 9
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal 1998, 41(8):578-588.
    • (1998) Computer Journal , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 0003891734 scopus 로고
    • Mixture Models: Inference and Applications to Clustering
    • New York: Marcel Dekker
    • McLachlan GJ, Basford KE. Mixture Models: Inference and Applications to Clustering. 1988, New York: Marcel Dekker.
    • (1988)
    • McLachlan, G.J.1    Basford, K.E.2
  • 12
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux G, Govaert G. Gaussian parsimonious clustering models. Pattern Recognition 1995, 28:781-793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 14
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978, 6:461-454.
    • (1978) Annals of Statistics , vol.6 , pp. 461-1454
    • Schwarz, G.1
  • 15
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • 10.1002/cyto.a.20531, 18307272
    • Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry 2008, 73:321-332. 10.1002/cyto.a.20531, 18307272.
    • (2008) Cytometry , vol.73 , pp. 321-332
    • Lo, K.1    Brinkman, R.R.2    Gottardo, R.3
  • 16
    • 34548295604 scopus 로고    scopus 로고
    • Flow Cytometry analyses and bioinformatics: Interest in new softwares to optimize novel technologies and to favor the emergence of innovative concepts in cell research
    • Lizard G. Flow Cytometry analyses and bioinformatics: Interest in new softwares to optimize novel technologies and to favor the emergence of innovative concepts in cell research. Cytometry Part A 2007, 71A(9):646-647.
    • (2007) Cytometry Part A , vol.71 A , Issue.9 , pp. 646-647
    • Lizard, G.1
  • 17
    • 0022262848 scopus 로고
    • Automated identification of subpopulations in flow cytometric list mode data using cluster analysis
    • Murphy RF. Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry Part A 1985, 6:302-309.
    • (1985) Cytometry Part A , vol.6 , pp. 302-309
    • Murphy, R.F.1
  • 18
    • 0027320288 scopus 로고
    • Cluster analysis of flow cytometric list mode data on a personal computer
    • Bakker Schut TC, Grooth BDG, Greve J. Cluster analysis of flow cytometric list mode data on a personal computer. Cytometry Part A 1993, 14:649-659.
    • (1993) Cytometry Part A , vol.14 , pp. 649-659
    • Bakker Schut, T.C.1    Grooth, B.D.G.2    Greve, J.3
  • 19
    • 0026603242 scopus 로고
    • Analyzing multivariate flow cytometric data in aquatic sciences
    • 10.1002/cyto.990130311, 1576894
    • Demers S, Kim J, Legendre P, Legendre L. Analyzing multivariate flow cytometric data in aquatic sciences. Cytometry 1992, 13(3):291-298. 10.1002/cyto.990130311, 1576894.
    • (1992) Cytometry , vol.13 , Issue.3 , pp. 291-298
    • Demers, S.1    Kim, J.2    Legendre, P.3    Legendre, L.4
  • 20
    • 0035396522 scopus 로고    scopus 로고
    • Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data
    • 10.1002/1097-0320(20010701)44:3<210::AID-CYTO1113>3.0.CO;2-Y, 11429771
    • Wilkins MF, Hardy SA, Boddy L, Morris CW. Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data. Cytometry 2001, 44(3):210-217. 10.1002/1097-0320(20010701)44:3<210::AID-CYTO1113>3.0.CO;2-Y, 11429771.
    • (2001) Cytometry , vol.44 , Issue.3 , pp. 210-217
    • Wilkins, M.F.1    Hardy, S.A.2    Boddy, L.3    Morris, C.W.4
  • 21
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • 10.1073/pnas.95.25.14863, 24541, 9843981
    • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. PNAS 1998, 95:14863-14868. 10.1073/pnas.95.25.14863, 24541, 9843981.
    • (1998) PNAS , vol.95 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 22
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • Monterey, CA: Wadsworth & Brooks
    • Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. 1984, Monterey, CA: Wadsworth & Brooks.
    • (1984)
    • Breiman, L.1    Friedman, J.H.2    Olshen, R.A.3    Stone, C.J.4
  • 24
    • 0003408420 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond
    • Cambridge: MIT Press
    • Scholkopf B, Smola AJ. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. 2002, Cambridge: MIT Press.
    • (2002)
    • Scholkopf, B.1    Smola, A.J.2
  • 25
    • 0003401677 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Boston: Kluwer
    • Burges CJC. A Tutorial on Support Vector Machines for Pattern Recognition. 1998, Boston: Kluwer.
    • (1998)
    • Burges, C.J.C.1
  • 26
    • 0028797780 scopus 로고
    • Classification and regression trees for bone-marrow immunophenotyping
    • 10.1002/cyto.990200304, 7587706
    • Beckman RJ, Salzman GC, Stewart CC. Classification and regression trees for bone-marrow immunophenotyping. Cytometry 1995, 20(3):210-217. 10.1002/cyto.990200304, 7587706.
    • (1995) Cytometry , vol.20 , Issue.3 , pp. 210-217
    • Beckman, R.J.1    Salzman, G.C.2    Stewart, C.C.3
  • 28
    • 0030221394 scopus 로고    scopus 로고
    • Neural network analysis of flow cytometry immunophenotype data
    • 10.1109/10.508551, 9216152
    • Kothari R, Cualing H, Balachander T. Neural network analysis of flow cytometry immunophenotype data. Ieee Transactions on Biomedical Engineering 1996, 43(8):803-810. 10.1109/10.508551, 9216152.
    • (1996) Ieee Transactions on Biomedical Engineering , vol.43 , Issue.8 , pp. 803-810
    • Kothari, R.1    Cualing, H.2    Balachander, T.3
  • 29
    • 0035676247 scopus 로고    scopus 로고
    • Support vector machines for identifying organisms - a comparison with strongly partitioned radial basis function networks
    • Morris CW, Autret A, Boddy L. Support vector machines for identifying organisms - a comparison with strongly partitioned radial basis function networks. Ecological Modelling: 2001 2001, 57-67.
    • (2001) Ecological Modelling: 2001 , pp. 57-67
    • Morris, C.W.1    Autret, A.2    Boddy, L.3
  • 31
    • 25444451915 scopus 로고    scopus 로고
    • Nonparametric density estimation and clustering in astronomical sky survey
    • Jang W. Nonparametric density estimation and clustering in astronomical sky survey. Comput Stat Data Anal 2006, 50:760-774.
    • (2006) Comput Stat Data Anal , vol.50 , pp. 760-774
    • Jang, W.1
  • 32
    • 34547868556 scopus 로고    scopus 로고
    • Cluster analysis of massive datasets in astronomy
    • Jang W, Hendry M. Cluster analysis of massive datasets in astronomy. Statistics and Computing 2007, 17:253-262.
    • (2007) Statistics and Computing , vol.17 , pp. 253-262
    • Jang, W.1    Hendry, M.2
  • 33
    • 0034343765 scopus 로고    scopus 로고
    • Estimating the number of clusters
    • Cuevas A, Febrero M, Fraiman R. Estimating the number of clusters. Can J Stat 2000, 28:367-382.
    • (2000) Can J Stat , vol.28 , pp. 367-382
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 34
    • 0035963461 scopus 로고    scopus 로고
    • Cluster analysis: a further approach based on density estimation
    • Cuevas A, Febrero M, Fraiman R. Cluster analysis: a further approach based on density estimation. Comput Stat Data Anal 2001, 36:441-459.
    • (2001) Comput Stat Data Anal , vol.36 , pp. 441-459
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 36
    • 0001155449 scopus 로고
    • Percolation and cluster distribution. 1. Cluster multiple labeling technique and critical concentration algorithm
    • Hoshen J, Kopelman R. Percolation and cluster distribution. 1. Cluster multiple labeling technique and critical concentration algorithm. Physical Review B 1976, 14(8):3438-3445.
    • (1976) Physical Review B , vol.14 , Issue.8 , pp. 3438-3445
    • Hoshen, J.1    Kopelman, R.2
  • 37
    • 0003610874 scopus 로고
    • Introduction to Percolation Theory
    • London: Taylor and Francis, 2
    • Stauffer D, Aharony A. Introduction to Percolation Theory. 1994, London: Taylor and Francis, 2.
    • (1994)
    • Stauffer, D.1    Aharony, A.2
  • 38
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • 10.1111/j.0006-341X.2005.031032.x, 15737073
    • Tseng GC, Wong WH. Tight clustering: A resampling-based approach for identifying stable and tight patterns in data. Biometrics 2005, 61(1):10-16. 10.1111/j.0006-341X.2005.031032.x, 15737073.
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 39
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • 10.1126/science.220.4598.671, 17813860
    • Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983, 220(4598):671-680. 10.1126/science.220.4598.671, 17813860.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 40
    • 33646029128 scopus 로고    scopus 로고
    • Fluorescent cell barcoding in flow cytometery allows high-throughput drug screening and signaling profiling
    • 10.1038/nmeth872, 16628206
    • Krutzik PO, Nolan GP. Fluorescent cell barcoding in flow cytometery allows high-throughput drug screening and signaling profiling. Nature Methods 2006, 3:361-368. 10.1038/nmeth872, 16628206.
    • (2006) Nature Methods , vol.3 , pp. 361-368
    • Krutzik, P.O.1    Nolan, G.P.2
  • 42
    • 67649488081 scopus 로고    scopus 로고
    • FlowClust: a Bioconductor package for automated gating of flow cytometry data
    • 10.1186/1471-2105-10-145, 2701419, 19442304
    • Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: a Bioconductor package for automated gating of flow cytometry data. Bmc Bioinformatics 2009, 10. 10.1186/1471-2105-10-145, 2701419, 19442304.
    • (2009) Bmc Bioinformatics , vol.10
    • Lo, K.1    Hahne, F.2    Brinkman, R.R.3    Gottardo, R.4
  • 43
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variable into principal components
    • Hotelling H. Analysis of a complex of statistical variable into principal components. J Educ Psych 1933, 24:417-441.
    • (1933) J Educ Psych , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 44
    • 0031479641 scopus 로고    scopus 로고
    • Data-based choice of histogram bin width
    • Wand MP. Data-based choice of histogram bin width. The American Statistician 1997, 51:59-64.
    • (1997) The American Statistician , vol.51 , pp. 59-64
    • Wand, M.P.1
  • 45
    • 0003421261 scopus 로고
    • An Introduction to Probability Theory and Its Applications
    • New York: John Wiley and Sons
    • Feller W. An Introduction to Probability Theory and Its Applications. 1968, 1. New York: John Wiley and Sons.
    • (1968) , vol.1
    • Feller, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.