-
1
-
-
33746788900
-
Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry
-
Chattopadhyay P, Price D, Harper T, Betts M, Yu J, et al. (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nature Medicine 12: 972-977.
-
(2006)
Nature Medicine
, vol.12
, pp. 972-977
-
-
Chattopadhyay, P.1
Price, D.2
Harper, T.3
Betts, M.4
Yu, J.5
-
2
-
-
34047199677
-
Using smudge cells on routine blood smears to predict clinical outcome in chronic lymphocytic leukemia: A universally available prognostic test
-
Nowakowski G, Hoyer J, Shanafelt T, Geyer S, LaPlant B, et al. (2007) Using smudge cells on routine blood smears to predict clinical outcome in chronic lymphocytic leukemia: A universally available prognostic test. Mayo Clinic Proceedings 82: 449-453.
-
(2007)
Mayo Clinic Proceedings
, vol.82
, pp. 449-453
-
-
Nowakowski, G.1
Hoyer, J.2
Shanafelt, T.3
Geyer, S.4
LaPlant, B.5
-
3
-
-
34248338806
-
Cd33 expression and p-glycoprotein mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy
-
Walter R, Gooley T, van der Velden V, Loken M, van Dongen J, et al. (2007) Cd33 expression and p-glycoprotein mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood 109: 4168-4170.
-
(2007)
Blood
, vol.109
, pp. 4168-4170
-
-
Walter, R.1
Gooley, T.2
van der Velden, V.3
Loken, M.4
van Dongen, J.5
-
4
-
-
77955643156
-
B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression
-
Irish J, Myklebust J, Alizadeh A, Houot R, Sharman J, et al. (2010) B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proceedings of the National Academy of Sciences 107: 12747-12754.
-
(2010)
Proceedings of the National Academy of Sciences
, vol.107
, pp. 12747-12754
-
-
Irish, J.1
Myklebust, J.2
Alizadeh, A.3
Houot, R.4
Sharman, J.5
-
5
-
-
33745211703
-
Interpreting flow cytometry data: a guide for the perplexed
-
Herzenberg L, Tung J, Moore W, Herzenberg L, Parks D, (2006) Interpreting flow cytometry data: a guide for the perplexed. Nature Immunology 7: 681-685.
-
(2006)
Nature Immunology
, vol.7
, pp. 681-685
-
-
Herzenberg, L.1
Tung, J.2
Moore, W.3
Herzenberg, L.4
Parks, D.5
-
6
-
-
65949097067
-
Flowcore: a bioconductor package for high throughput flow cytometry
-
Hahne F, LeMeur N, Brinkman R, Ellis B, Haaland P, et al. (2009) Flowcore: a bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10.
-
(2009)
BMC Bioinformatics
, vol.10
-
-
Hahne, F.1
LeMeur, N.2
Brinkman, R.3
Ellis, B.4
Haaland, P.5
-
7
-
-
0022262848
-
Automated identification of subpopulations in flow cytometric list mode data using cluster analysis
-
Murphy RF, (1985) Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry 6: 302-309.
-
(1985)
Cytometry
, vol.6
, pp. 302-309
-
-
Murphy, R.F.1
-
9
-
-
42049123647
-
Automated gating of flow cytometry data via robust modelbased clustering
-
Lo K, Brinkman R, Gottardo R, (2008) Automated gating of flow cytometry data via robust modelbased clustering. Cytometry A 73: 321-332.
-
(2008)
Cytometry A
, vol.73
, pp. 321-332
-
-
Lo, K.1
Brinkman, R.2
Gottardo, R.3
-
10
-
-
42949083636
-
Mixture modeling approach to flow cytometry data
-
Boedigheimer M, Ferbas J, (2008) Mixture modeling approach to flow cytometry data. Cytometry A 73: 421-429.
-
(2008)
Cytometry A
, vol.73
, pp. 421-429
-
-
Boedigheimer, M.1
Ferbas, J.2
-
11
-
-
48849105886
-
Statistical mixture modeling for cell subtype identification in flow cytometry
-
Chan C, Feng F, Ottinger J, Foster D, West M, et al. (2008) Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry A 73: 693-701.
-
(2008)
Cytometry A
, vol.73
, pp. 693-701
-
-
Chan, C.1
Feng, F.2
Ottinger, J.3
Foster, D.4
West, M.5
-
12
-
-
66649115648
-
Automated high-dimensional flow cytometric data anlysis
-
Pyne S, Hu X, Kang K, Rossin E, Lin T, et al. (2009) Automated high-dimensional flow cytometric data anlysis. Proceedings of the National Academy of Science 106: 8519-8524.
-
(2009)
Proceedings of the National Academy of Science
, vol.106
, pp. 8519-8524
-
-
Pyne, S.1
Hu, X.2
Kang, K.3
Rossin, E.4
Lin, T.5
-
13
-
-
77954558188
-
Automatic clustering of flow cytometry data with density-based merging
-
Walther G, Zimmerman N, Moore W, Parks D, Meehan S, et al. (2009) Automatic clustering of flow cytometry data with density-based merging. Advances in Bioinformatics.
-
(2009)
Advances in Bioinformatics
-
-
Walther, G.1
Zimmerman, N.2
Moore, W.3
Parks, D.4
Meehan, S.5
-
14
-
-
77956565464
-
Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
-
Qian Y, Wei C, Lee F, Campbell J, Halliley J, et al. (2010) Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Part B: Clinical Cytometry 78B: S69-S82.
-
(2010)
Cytometry Part B: Clinical Cytometry
, vol.78 B
-
-
Qian, Y.1
Wei, C.2
Lee, F.3
Campbell, J.4
Halliley, J.5
-
15
-
-
77954938186
-
Data reduction for spectral clustering to analyze high throughput flow cytometry data
-
Zare H, Shooshtari P, Gupta A, Brinkman R, (2010) Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11: 403.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 403
-
-
Zare, H.1
Shooshtari, P.2
Gupta, A.3
Brinkman, R.4
-
16
-
-
80054768631
-
Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
-
Qiu P, Simonds E, Bendall S, Gibbs K Jr, Bruggner R, et al. (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature Biotechnology 29: 886-891.
-
(2011)
Nature Biotechnology
, vol.29
, pp. 886-891
-
-
Qiu, P.1
Simonds, E.2
Bendall, S.3
Gibbs Jr., K.4
Bruggner, R.5
-
17
-
-
79955750055
-
Single cell mass cytometry of differential immune and drug responses across the human hematopoietic continuum
-
Bendall S, Simonds E, Qiu P, Amir E, Krutzik P, et al. (2011) Single cell mass cytometry of differential immune and drug responses across the human hematopoietic continuum. Science 332: 687-696.
-
(2011)
Science
, vol.332
, pp. 687-696
-
-
Bendall, S.1
Simonds, E.2
Qiu, P.3
Amir, E.4
Krutzik, P.5
-
18
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey TS, Christianini N, Duffy N, Bednarski DW, Schummer M, et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16: 906-914.
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
Christianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
-
19
-
-
0142192759
-
Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect
-
O'Neill MC, Song L, (2003) Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect. BMC Bioinformatics 4.
-
(2003)
BMC Bioinformatics
, vol.4
-
-
O'Neill, M.C.1
Song, L.2
-
20
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis C, (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9: 319.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.3
-
21
-
-
25144474549
-
Ensemble dependence model for classification and prediction of cancer and normal gene expression data
-
Qiu P, Wang Z, Liu R, (2005) Ensemble dependence model for classification and prediction of cancer and normal gene expression data. Bioinformatics 21: 3114-3121.
-
(2005)
Bioinformatics
, vol.21
, pp. 3114-3121
-
-
Qiu, P.1
Wang, Z.2
Liu, R.3
-
23
-
-
33845881963
-
Improved breast cancer prognosis through the combination of clinical and genetic markers
-
Sun Y, Goodison S, Li J, Liu L, Farmerie W, (2007) Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23: 30-37.
-
(2007)
Bioinformatics
, vol.23
, pp. 30-37
-
-
Sun, Y.1
Goodison, S.2
Li, J.3
Liu, L.4
Farmerie, W.5
-
26
-
-
77949644952
-
Towards a rigorous assessment of systems biology models: the DREAM3 challenges
-
Prill R, Marbach D, Saez-Rodriguez J, Sorger P, Alexopoulos L, et al. (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS ONE 5: e9202.
-
(2010)
PLoS ONE
, vol.5
-
-
Prill, R.1
Marbach, D.2
Saez-Rodriguez, J.3
Sorger, P.4
Alexopoulos, L.5
-
27
-
-
80052592949
-
Crowdsourcing network inference: the DREAM predictive signaling network challenge
-
Prill R, Saez-Rodriguez J, Alexopoulos L, Sorger P, Stolovitzky G, (2011) Crowdsourcing network inference: the DREAM predictive signaling network challenge. Science Signaling 4: mr7.
-
(2011)
Science Signaling
, vol.4
-
-
Prill, R.1
Saez-Rodriguez, J.2
Alexopoulos, L.3
Sorger, P.4
Stolovitzky, G.5
-
29
-
-
85047699080
-
A new logicle display method avoids deceptive effects of logarithmic scaling for low signals and compensated data
-
Parks D, Roederer M, Moore W, (2006) A new logicle display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry Part A 69A: 541-551.
-
(2006)
Cytometry Part A
, vol.69 A
, pp. 541-551
-
-
Parks, D.1
Roederer, M.2
Moore, W.3
-
30
-
-
80053928938
-
Association of reactive oxygen species-mediated signal transduction with in vitro apoptosis sensitivity in chronic lymphocytic leukemia B cells
-
Palazzo A, Evensen E, Huang Y, Cesano A, Nolan G, et al. (2011) Association of reactive oxygen species-mediated signal transduction with in vitro apoptosis sensitivity in chronic lymphocytic leukemia B cells. PLoS ONE 6: e24592.
-
(2011)
PLoS ONE
, vol.6
-
-
Palazzo, A.1
Evensen, E.2
Huang, Y.3
Cesano, A.4
Nolan, G.5
-
32
-
-
79955558072
-
An optimal minimum spanning tree algorithm
-
Pettie S, Ramach V, (1999) An optimal minimum spanning tree algorithm. Journal of the ACM 49: 49-60.
-
(1999)
Journal of the ACM
, vol.49
, pp. 49-60
-
-
Pettie, S.1
Ramach, V.2
|