메뉴 건너뛰기




Volumn 73, Issue 4, 2008, Pages 321-332

Automated gating of flow cytometry data via robust model-based clustering

Author keywords

Box Cox transformation; Clustering; EM algorithm; Flow cytometry; Gating; Mixture model; Outliers; Statistics; t distribution

Indexed keywords

RITUXIMAB;

EID: 42049123647     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.20531     Document Type: Conference Paper
Times cited : (206)

References (63)
  • 1
    • 34548295604 scopus 로고    scopus 로고
    • Flow cytometry analyses and bioinformatics: Interest in new softwares to optimize novel technologies and to favor the emergence of innovative concepts in cell research
    • Lizard G. Flow cytometry analyses and bioinformatics: Interest in new softwares to optimize novel technologies and to favor the emergence of innovative concepts in cell research. Cytometry A 2007;71A:646-647.
    • (2007) Cytometry A , vol.71 A , pp. 646-647
    • Lizard, G.1
  • 2
    • 1542410055 scopus 로고    scopus 로고
    • Impact of flow cytometry on the diagnosis and characterization of lymphomas, chronic lymphoproliferative disorders and plasma cell neoplasias
    • Braylan RC. Impact of flow cytometry on the diagnosis and characterization of lymphomas, chronic lymphoproliferative disorders and plasma cell neoplasias. Cytometry A 2004;58A:57-61.
    • (2004) Cytometry A , vol.58 A , pp. 57-61
    • Braylan, R.C.1
  • 3
    • 1542619411 scopus 로고    scopus 로고
    • DNA histogram analysis for node-negative breast cancer
    • Bagwell CB. DNA histogram analysis for node-negative breast cancer. Cytometry A 2004;58A:76-78.
    • (2004) Cytometry A , vol.58 A , pp. 76-78
    • Bagwell, C.B.1
  • 4
    • 0037234069 scopus 로고    scopus 로고
    • Beyond six colors: A new era in flow cytometry
    • De Rosa SC, Brenchley JM, Roederer M. Beyond six colors: A new era in flow cytometry. Nat Med 2003;9:112-117.
    • (2003) Nat Med , vol.9 , pp. 112-117
    • De Rosa, S.C.1    Brenchley, J.M.2    Roederer, M.3
  • 6
    • 0035450135 scopus 로고    scopus 로고
    • Frequency difference gating: A multivariate method for identifying subsets that differ between samples
    • Roederer M, Hardy R. Frequency difference gating: A multivariate method for identifying subsets that differ between samples. Cytometry 2001;45:56-64.
    • (2001) Cytometry , vol.45 , pp. 56-64
    • Roederer, M.1    Hardy, R.2
  • 7
    • 0035450349 scopus 로고    scopus 로고
    • Probability binning comparison: A metric for quantitating univariate distribution differences
    • Roederer M, Treister A, Moore W, Herzenberg LA. Probability binning comparison: A metric for quantitating univariate distribution differences. Cytometry 2002;45:37-46.
    • (2002) Cytometry , vol.45 , pp. 37-46
    • Roederer, M.1    Treister, A.2    Moore, W.3    Herzenberg, L.A.4
  • 8
    • 0035450879 scopus 로고    scopus 로고
    • Probability binning comparison: A metric for quantitating multivariate distribution differences
    • Roederer M, Moore W, Treister A, Hardy RR, Herzenberg LA. Probability binning comparison: A metric for quantitating multivariate distribution differences. Cytometry 2001;45:47-55.
    • (2001) Cytometry , vol.45 , pp. 47-55
    • Roederer, M.1    Moore, W.2    Treister, A.3    Hardy, R.R.4    Herzenberg, L.A.5
  • 9
    • 2442623278 scopus 로고    scopus 로고
    • A new spreadsheet method for the analysis of bivariate flow cytometric data
    • Tzircotis G, Thorne RF, Isacke CM. A new spreadsheet method for the analysis of bivariate flow cytometric data. BMC Cell Biol 2004;5:10.
    • (2004) BMC Cell Biol , vol.5 , pp. 10
    • Tzircotis, G.1    Thorne, R.F.2    Isacke, C.M.3
  • 12
    • 42049105058 scopus 로고    scopus 로고
    • Parks DR. Data processing and analysis: Data management. In: Current Protocols in Cytometry. Robinson JP, editor. New York: Wiley; 1997. Chapters 10:10.1.1-10.1.6.
    • Parks DR. Data processing and analysis: Data management. In: Current Protocols in Cytometry. Robinson JP, editor. New York: Wiley; 1997. Chapters 10:10.1.1-10.1.6.
  • 14
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Le Cam LM, Neyman J, editors. Berkeley: University of California Press;
    • MacQueen JB. Some methods for classification and analysis of multivariate observations. In: Proceedings of fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. Le Cam LM, Neyman J, editors. Berkeley: University of California Press; 1967. pp 281-297.
    • (1967) Proceedings of fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 15
    • 0022262848 scopus 로고
    • Automated identification of subpopulations in flow cytometric list mode data using cluster analysis
    • Murphy RF. Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry 1985;6:302-309.
    • (1985) Cytometry , vol.6 , pp. 302-309
    • Murphy, R.F.1
  • 16
    • 0027320288 scopus 로고
    • Cluster analysis of flow cytometric list mode data on a personal computer
    • Bakker Schut TC, Grooth BGD, Greve J. Cluster analysis of flow cytometric list mode data on a personal computer. Cytometry 1993;14:649-659.
    • (1993) Cytometry , vol.14 , pp. 649-659
    • Bakker Schut, T.C.1    Grooth, B.G.D.2    Greve, J.3
  • 17
    • 0026603242 scopus 로고
    • Analyzing multivariate flow cytometric data in aquatic sciences
    • Demers S, Kim J, Legendre P, Legendre L. Analyzing multivariate flow cytometric data in aquatic sciences. Cytometry 1992;13:291-298.
    • (1992) Cytometry , vol.13 , pp. 291-298
    • Demers, S.1    Kim, J.2    Legendre, P.3    Legendre, L.4
  • 18
    • 0035396522 scopus 로고    scopus 로고
    • Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data
    • Wilkins MF, Hardy SA, Boddy L, Morris CW. Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data. Cytometry 2001;44:210-217.
    • (2001) Cytometry , vol.44 , pp. 210-217
    • Wilkins, M.F.1    Hardy, S.A.2    Boddy, L.3    Morris, C.W.4
  • 23
    • 0001794519 scopus 로고    scopus 로고
    • Artificial neural networks for pattern recognition
    • Fielding AH, editor, Boston: Kluwer;
    • Boddy L, Morris CW. Artificial neural networks for pattern recognition. In: Fielding AH, editor. Machine Learning Methods for Ecological Applications. Boston: Kluwer; 1999. pp 37-87.
    • (1999) Machine Learning Methods for Ecological Applications , pp. 37-87
    • Boddy, L.1    Morris, C.W.2
  • 26
    • 0028797780 scopus 로고
    • Classification and regression trees for bone marrow immunophenotyping
    • Beckman RJ, Salzman GC, Stewart CC. Classification and regression trees for bone marrow immunophenotyping. Cytometry 1995;20:210-217.
    • (1995) Cytometry , vol.20 , pp. 210-217
    • Beckman, R.J.1    Salzman, G.C.2    Stewart, C.C.3
  • 27
    • 0030221394 scopus 로고    scopus 로고
    • Neural network analysis of flow cytometry immunophenotype data
    • Kothari R, Cualing H, Balachander T. Neural network analysis of flow cytometry immunophenotype data. IEEE Trans Biomed Eng 1996;43:803-810.
    • (1996) IEEE Trans Biomed Eng , vol.43 , pp. 803-810
    • Kothari, R.1    Cualing, H.2    Balachander, T.3
  • 29
    • 0035676247 scopus 로고    scopus 로고
    • Support vector machines for identifying organisms - A comparison with strongly partitioned radial basis function networks
    • Morris CW, Autret A, Boddy L. Support vector machines for identifying organisms - A comparison with strongly partitioned radial basis function networks. Ecol Model 2001;146:57-67.
    • (2001) Ecol Model , vol.146 , pp. 57-67
    • Morris, C.W.1    Autret, A.2    Boddy, L.3
  • 30
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993;49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 33
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Statist Assoc 2002;97:611-631.
    • (2002) J Am Statist Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 34
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. Model-based clustering and data transformations for gene expression data. Bioinformatics 2001;17:977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 35
    • 0036372266 scopus 로고    scopus 로고
    • Model-based cluster analysis of microarray gene-expression data
    • Pan W, Lin J, Le CT. Model-based cluster analysis of microarray gene-expression data. Genome Biol 2002;3:R9.
    • (2002) Genome Biol , vol.3
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 36
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box GEP, Cox DR. An analysis of transformations. JR Statist Soc B 1964;26:211-252.
    • (1964) JR Statist Soc B , vol.26 , pp. 211-252
    • Box, G.E.P.1    Cox, D.R.2
  • 37
  • 38
    • 0029589386 scopus 로고
    • Analysis of tomato root initiation using a normal mixture distribution
    • Gutierrez RG, Carroll RJ, Wang N, Lee GH, Taylor BH. Analysis of tomato root initiation using a normal mixture distribution. Biometrics 1995;51:1461-1468.
    • (1995) Biometrics , vol.51 , pp. 1461-1468
    • Gutierrez, R.G.1    Carroll, R.J.2    Wang, N.3    Lee, G.H.4    Taylor, B.H.5
  • 39
    • 0024388784 scopus 로고
    • Modified Box-Cox transform for modulating the dynamic range of flow cytometry data
    • Dvorak JA, Banks SM. Modified Box-Cox transform for modulating the dynamic range of flow cytometry data. Cytometry 1989;10:811-813.
    • (1989) Cytometry , vol.10 , pp. 811-813
    • Dvorak, J.A.1    Banks, S.M.2
  • 40
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t distribution
    • Peel D, McLachlan GJ. Robust mixture modelling using the t distribution. Statist Comput 2000;10:339-348.
    • (2000) Statist Comput , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 41
    • 0038923869 scopus 로고
    • Prediction and power transformation when the choice of power is restricted to a finite set
    • Carroll RJ. Prediction and power transformation when the choice of power is restricted to a finite set. J Am Statist Assoc 1982;77:908-915.
    • (1982) J Am Statist Assoc , vol.77 , pp. 908-915
    • Carroll, R.J.1
  • 42
    • 0024062230 scopus 로고
    • Transformations unmasked
    • Atkinson AC. Transformations unmasked. Technometrics 1988;30:311-318.
    • (1988) Technometrics , vol.30 , pp. 311-318
    • Atkinson, A.C.1
  • 44
    • 42049117475 scopus 로고    scopus 로고
    • Flow Informatics and Computational Cytometry Society
    • Flow Informatics and Computational Cytometry Society. http://www.ficcs.org/software.html#Data_Files.
  • 45
    • 0346158531 scopus 로고    scopus 로고
    • High content screening applied to large-scale cell biology
    • Abraham VC, Taylor DL, Haskins JR. High content screening applied to large-scale cell biology. Trends Biotechnol 2004;22:15-22.
    • (2004) Trends Biotechnol , vol.22 , pp. 15-22
    • Abraham, V.C.1    Taylor, D.L.2    Haskins, J.R.3
  • 48
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. JR Statist Soc B 1977;39:1-22.
    • (1977) JR Statist Soc B , vol.39 , pp. 1-22
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 49
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux G, Govaert G. Gaussian parsimonious clustering models. Pattern Recogn 1995;28:781-793.
    • (1995) Pattern Recogn , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 50
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using EM and its extensions, ECM and ECME
    • Liu C, Rubin D. ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statist Sinica 1995;5:19-39.
    • (1995) Statist Sinica , vol.5 , pp. 19-39
    • Liu, C.1    Rubin, D.2
  • 51
    • 0008602520 scopus 로고    scopus 로고
    • ML estimation of the multivariate t distribution and the EM algorithm
    • Liu C. ML estimation of the multivariate t distribution and the EM algorithm. J Multivariate Anal 1997;63:296-312.
    • (1997) J Multivariate Anal , vol.63 , pp. 296-312
    • Liu, C.1
  • 52
    • 84910378827 scopus 로고
    • An analysis of transformations revisited
    • Bickel PJ, Doksum KA. An analysis of transformations revisited. J Am Statist Assoc 1981;76:296-311.
    • (1981) J Am Statist Assoc , vol.76 , pp. 296-311
    • Bickel, P.J.1    Doksum, K.A.2
  • 53
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for model-based Gaussian hierarchical clustering
    • Fraley C. Algorithms for model-based Gaussian hierarchical clustering. SIAM J Sci Comput 1998;20:270-281.
    • (1998) SIAM J Sci Comput , vol.20 , pp. 270-281
    • Fraley, C.1
  • 55
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Statist 1978;6:461-464.
    • (1978) Ann Statist , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 56
    • 33749546272 scopus 로고    scopus 로고
    • Statistical methods and software for the analysis of high-throughput reverse genetic assays using flow cytometry readouts
    • Hahne F, Arlt D, Sauermann M, Majety M, Poustka A, Wiemann S, Huber W. Statistical methods and software for the analysis of high-throughput reverse genetic assays using flow cytometry readouts. Genome Biol 2006;7:R77.
    • (2006) Genome Biol , vol.7
    • Hahne, F.1    Arlt, D.2    Sauermann, M.3    Majety, M.4    Poustka, A.5    Wiemann, S.6    Huber, W.7
  • 57
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • Celeux G, Govaert G. A classification EM algorithm for clustering and two stochastic versions. Comput Statist Data Anal 1992;14:315-332.
    • (1992) Comput Statist Data Anal , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 58
    • 0033236321 scopus 로고    scopus 로고
    • Choosing models in model-based clustering and discriminant analysis
    • Biernacki C, Govaert G. Choosing models in model-based clustering and discriminant analysis. J Stat Comput Simul 1999;64:49-71.
    • (1999) J Stat Comput Simul , vol.64 , pp. 49-71
    • Biernacki, C.1    Govaert, G.2
  • 59
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 1998;41:578-588.
    • (1998) Comput J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 60
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki C, Celeux G, Govaert G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans Pattern Anal Mach Intell 2000;22: 719-725.
    • (2000) IEEE Trans Pattern Anal Mach Intell , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 61
    • 0030305457 scopus 로고    scopus 로고
    • A language for data analysis and graphics
    • Ihaka R, Gentleman R. R: A language for data analysis and graphics. J Comput Graph Statist 1996;5:299-314.
    • (1996) J Comput Graph Statist , vol.5 , pp. 299-314
    • Ihaka, R.1    Gentleman, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.