-
1
-
-
78650584376
-
Fuzzy neural networks for water level and discharge forecasting with uncertainty
-
Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26:523–537. doi:10.1016/j.envsoft.2010.10.016
-
(2011)
Environ Model Softw
, vol.26
, pp. 523-537
-
-
Alvisi, S.1
Franchini, M.2
-
2
-
-
31044438334
-
Multi-time scale stream flow predictions: the support vector machines approach
-
Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318:7–16. doi:10.1016/j.jhydrol.2005.06.001
-
(2006)
J Hydrol
, vol.318
, pp. 7-16
-
-
Asefa, T.1
Kemblowski, M.2
McKee, M.3
Khalil, A.4
-
3
-
-
84868623982
-
Streamflow forecasting by SVM with quantum behaved particle swarm optimization
-
Ch S, Anand N, Panigrahi BK, Mathur S (2013) Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23. doi:10.1016/j.neucom.2012.07.017
-
(2013)
Neurocomputing
, vol.101
, pp. 18-23
-
-
Ch, S.1
Anand, N.2
Panigrahi, B.K.3
Mathur, S.4
-
4
-
-
0035340711
-
A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
-
Chang FJ, Chen YC (2001) A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J Hydrol 245:153–164. doi:10.1016/S0022-1694(01)00350-X
-
(2001)
J Hydrol
, vol.245
, pp. 153-164
-
-
Chang, F.J.1
Chen, Y.C.2
-
5
-
-
84907815736
-
Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions
-
Maier HR, Kapelan Z, Kasprzyk J et al (2014) Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ Model Softw 62:271–299. doi:10.1016/j.envsoft.2014.09.013
-
(2014)
Environ Model Softw
, vol.62
, pp. 271-299
-
-
Maier, H.R.1
Kapelan, Z.2
Kasprzyk, J.3
-
6
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
-
Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124. doi:10.1016/S1364-8152(99)00007-9
-
(2000)
Environ Model Softw
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
7
-
-
0025429495
-
Effect of drought on streamflow characteristics
-
Chang TJ (1990) Effect of drought on streamflow characteristics. Eng J Irrig Drain 116:332–341
-
(1990)
Eng J Irrig Drain
, vol.116
, pp. 332-341
-
-
Chang, T.J.1
-
8
-
-
0031981273
-
A monthly streamflow model
-
Mohseni O, Stefan HG (1998) A monthly streamflow model. Water Resour Res 34:1287–1298. doi:10.1029/97WR02944
-
(1998)
Water Resour Res
, vol.34
, pp. 1287-1298
-
-
Mohseni, O.1
Stefan, H.G.2
-
9
-
-
0036986226
-
Modeling streamflow from artificially drained agricultural watersheds in Illinois
-
Sogbedji JM, McIsaac GF (2002) Modeling streamflow from artificially drained agricultural watersheds in Illinois. J Am Water Resour Assoc 38:1753–1765. doi:10.1111/j.1752-1688.2002.tb04379.x
-
(2002)
J Am Water Resour Assoc
, vol.38
, pp. 1753-1765
-
-
Sogbedji, J.M.1
McIsaac, G.F.2
-
10
-
-
84873051854
-
Streamflow modelling: a primer on applications, approaches and challenges
-
Bourdin DR, Fleming SW, Stull RB (2012) Streamflow modelling: a primer on applications, approaches and challenges. Atmos Ocean 50:507–536. doi:10.1080/07055900.2012.734276
-
(2012)
Atmos Ocean
, vol.50
, pp. 507-536
-
-
Bourdin, D.R.1
Fleming, S.W.2
Stull, R.B.3
-
11
-
-
84978032438
-
Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence
-
Yaseen ZM, Kisi O, Demir V (2016) Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence. Water Resour Manag. doi:10.1007/s11269-016-1408-5
-
(2016)
Water Resour Manag
-
-
Yaseen, Z.M.1
Kisi, O.2
Demir, V.3
-
14
-
-
84870999624
-
Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
-
Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441. doi:10.1016/j.jhydrol.2012.11.017
-
(2013)
J Hydrol
, vol.476
, pp. 433-441
-
-
Valipour, M.1
Banihabib, M.E.2
Behbahani, S.M.R.3
-
15
-
-
84869052207
-
Monthly inflow forecasting using autoregressive artificial neural network
-
Valipour M, Banihabib M, Behbahani S (2012) Monthly inflow forecasting using autoregressive artificial neural network. J Appl Sci 12:2139–2147
-
(2012)
J Appl Sci
, vol.12
, pp. 2139-2147
-
-
Valipour, M.1
Banihabib, M.2
Behbahani, S.3
-
16
-
-
84936985967
-
Long-term runoff study using SARIMA and ARIMA models in the United States
-
Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl n/a-n/a. doi:10.1002/met.1491
-
(2015)
Meteorol Appl n/a-n/a
-
-
Valipour, M.1
-
17
-
-
0036998831
-
Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
-
Hsu K, Gupta HV, Gao X et al (2002) Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resour Res. doi:10.1029/2001WR000795
-
(2002)
Water Resour Res
-
-
Hsu, K.1
Gupta, H.V.2
Gao, X.3
-
18
-
-
23044443211
-
Application of generalized regression neural networks to intermittent flow forecasting and estimation
-
Cigizoglu HK (2005) Application of generalized regression neural networks to intermittent flow forecasting and estimation. J Hydrol Eng 10:336–341. doi:10.1061/(ASCE)1084-0699(2005)10:4(336)
-
(2005)
J Hydrol Eng
, vol.10
, pp. 336-341
-
-
Cigizoglu, H.K.1
-
19
-
-
18744366631
-
Artificial neural networks for forecasting watershed runoff and stream flows
-
Wu JS, Han J, Annambhotla S, Bryant S (2005) Artificial neural networks for forecasting watershed runoff and stream flows. J Hydrol Eng 10:216–222. doi:10.1061/(ASCE)1084-0699(2005)10:3(216)
-
(2005)
J Hydrol Eng
, vol.10
, pp. 216-222
-
-
Wu, J.S.1
Han, J.2
Annambhotla, S.3
Bryant, S.4
-
20
-
-
34548146808
-
Streamflow forecasting using different artificial neural network algorithms
-
Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12:532–539. doi:10.1061/(ASCE)1084-0699(2007)12:5(532)
-
(2007)
J Hydrol Eng
, vol.12
, pp. 532-539
-
-
Kişi, Ö.1
-
21
-
-
34248202148
-
Artificial neural network model for synthetic streamflow generation
-
Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic streamflow generation. Water Resour Manag 21:1015–1029. doi:10.1007/s11269-006-9070-y
-
(2007)
Water Resour Manag
, vol.21
, pp. 1015-1029
-
-
Ahmed, J.A.1
Sarma, A.K.2
-
22
-
-
77957016230
-
Application of radial basis function neural networks to short-term streamflow forecasting
-
Kagoda PA, Ndiritu J, Ntuli C, Mwaka B (2010) Application of radial basis function neural networks to short-term streamflow forecasting. Phys Chem Earth 35:571–581. doi:10.1016/j.pce.2010.07.021
-
(2010)
Phys Chem Earth
, vol.35
, pp. 571-581
-
-
Kagoda, P.A.1
Ndiritu, J.2
Ntuli, C.3
Mwaka, B.4
-
23
-
-
77953342831
-
Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
-
Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J Hydrol Eng 15:275–283. doi:10.1061/(ASCE)HE.1943-5584.0000188
-
(2010)
J Hydrol Eng
, vol.15
, pp. 275-283
-
-
Yonaba, H.1
Anctil, F.2
Fortin, V.3
-
24
-
-
0035398081
-
Model induction with support vector machines: introduction and applications
-
Dibike Yonas B, Velickov Slavco, Solomatine Dimitri, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comput Civ Eng 15:208–216
-
(2001)
J Comput Civ Eng
, vol.15
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
25
-
-
60249084777
-
Generalization performance of support vector machines and neural networks in runoff modeling
-
Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36:7624–7629. doi:10.1016/j.eswa.2008.09.053
-
(2009)
Expert Syst Appl
, vol.36
, pp. 7624-7629
-
-
Behzad, M.1
Asghari, K.2
Eazi, M.3
Palhang, M.4
-
26
-
-
79953796890
-
Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
-
Noori R, Karbassi AR, Moghaddamnia A et al (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J Hydrol 401:177–189. doi:10.1016/j.jhydrol.2011.02.021
-
(2011)
J Hydrol
, vol.401
, pp. 177-189
-
-
Noori, R.1
Karbassi, A.R.2
Moghaddamnia, A.3
-
27
-
-
65349101737
-
Using oceanic-atmospheric oscillations for long lead time streamflow forecasting
-
Kalra A, Ahmad S (2009) Using oceanic-atmospheric oscillations for long lead time streamflow forecasting. Water Resour Res 45:1–18. doi:10.1029/2008WR006855
-
(2009)
Water Resour Res
, vol.45
, pp. 1-18
-
-
Kalra, A.1
Ahmad, S.2
-
28
-
-
84890351420
-
A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
-
He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386. doi:10.1016/j.jhydrol.2013.11.054
-
(2014)
J Hydrol
, vol.509
, pp. 379-386
-
-
He, Z.1
Wen, X.2
Liu, H.3
Du, J.4
-
29
-
-
33947693294
-
A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
-
El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21:533–556
-
(2007)
Water Resour Manag
, vol.21
, pp. 533-556
-
-
El-Shafie, A.1
Taha, M.R.2
Noureldin, A.3
-
30
-
-
36649032078
-
Rainfall-runoff modeling through hybrid intelligent system
-
Nayak PC, Sudheer KP, Jain SK (2007) Rainfall-runoff modeling through hybrid intelligent system. Water Resour Res 43:1–17. doi:10.1029/2006WR004930
-
(2007)
Water Resour Res
, vol.43
, pp. 1-17
-
-
Nayak, P.C.1
Sudheer, K.P.2
Jain, S.K.3
-
31
-
-
69949143939
-
Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
-
Pramanik N, Panda RK (2009) Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol Sci J 54:247–260. doi:10.1623/hysj.54.2.247
-
(2009)
Hydrol Sci J
, vol.54
, pp. 247-260
-
-
Pramanik, N.1
Panda, R.K.2
-
32
-
-
84859108726
-
River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches
-
Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manag 26:1715–1729. doi:10.1007/s11269-012-9982-7
-
(2012)
Water Resour Manag
, vol.26
, pp. 1715-1729
-
-
Sanikhani, H.1
Kisi, O.2
-
33
-
-
84910653625
-
Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C ++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed
-
Sharma S, Srivastava P, Fang X, Kalin L (2015) Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C ++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed. Expert Syst Appl 42:2213–2223. doi:10.1016/j.eswa.2014.09.062
-
(2015)
Expert Syst Appl
, vol.42
, pp. 2213-2223
-
-
Sharma, S.1
Srivastava, P.2
Fang, X.3
Kalin, L.4
-
34
-
-
0035105632
-
Modelling rainfall-runoff using genetic programming
-
Whigham PA, Crapper PF (2001) Modelling rainfall-runoff using genetic programming. Math Comput Model 33:707–721. doi:10.1016/S0895-7177(00)00274-0
-
(2001)
Math Comput Model
, vol.33
, pp. 707-721
-
-
Whigham, P.A.1
Crapper, P.F.2
-
35
-
-
40849130727
-
Short-term streamflow forecasting with global climate change implications—a comparative study between genetic programming and neural network models
-
Makkeasorn A, Chang NB, Zhou X (2008) Short-term streamflow forecasting with global climate change implications—a comparative study between genetic programming and neural network models. J Hydrol 352:336–354. doi:10.1016/j.jhydrol.2008.01.023
-
(2008)
J Hydrol
, vol.352
, pp. 336-354
-
-
Makkeasorn, A.1
Chang, N.B.2
Zhou, X.3
-
36
-
-
70349753109
-
Linear genetic programming for time-series modelling of daily flow rate
-
Guven A (2009) Linear genetic programming for time-series modelling of daily flow rate. J Earth Syst Sci 118:137–146. doi:10.1007/s12040-009-0022-9
-
(2009)
J Earth Syst Sci
, vol.118
, pp. 137-146
-
-
Guven, A.1
-
37
-
-
78349309407
-
Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection
-
Kashid SS, Ghosh S, Maity R (2010) Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection. J Hydrol 395:23–38. doi:10.1016/j.jhydrol.2010.10.004
-
(2010)
J Hydrol
, vol.395
, pp. 23-38
-
-
Kashid, S.S.1
Ghosh, S.2
Maity, R.3
-
38
-
-
84870159777
-
Modeling rainfall-runoff process using soft computing techniques
-
Kisi O, Shiri J, Tombul M (2013) Modeling rainfall-runoff process using soft computing techniques. Comput Geosci 51:108–117. doi:10.1016/j.cageo.2012.07.001
-
(2013)
Comput Geosci
, vol.51
, pp. 108-117
-
-
Kisi, O.1
Shiri, J.2
Tombul, M.3
-
39
-
-
84892477888
-
Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network
-
Sahay RR, Srivastava A (2014) Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Water Resour Manag 28:301–317. doi:10.1007/s11269-013-0446-5
-
(2014)
Water Resour Manag
, vol.28
, pp. 301-317
-
-
Sahay, R.R.1
Srivastava, A.2
-
40
-
-
79955025170
-
Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process
-
Nourani V, Kisi Ö, Komasi M (2011) Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J Hydrol 402:41–59. doi:10.1016/j.jhydrol.2011.03.002
-
(2011)
J Hydrol
, vol.402
, pp. 41-59
-
-
Nourani, V.1
Kisi, Ö.2
Komasi, M.3
-
41
-
-
84911986380
-
Successive-station monthly streamflow prediction using neuro-wavelet technique
-
Danandeh Mehr A, Kahya E, Bagheri F, Deliktas E (2013) Successive-station monthly streamflow prediction using neuro-wavelet technique. Earth Sci Inform. doi:10.1007/s12145-013-0141-3
-
(2013)
Earth Sci Inform
-
-
Danandeh Mehr, A.1
Kahya, E.2
Bagheri, F.3
Deliktas, E.4
-
42
-
-
79951579061
-
A wavelet-support vector machine conjunction model for monthly streamflow forecasting
-
Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140. doi:10.1016/j.jhydrol.2010.12.041
-
(2011)
J Hydrol
, vol.399
, pp. 132-140
-
-
Kisi, O.1
Cimen, M.2
-
43
-
-
78651297519
-
Daily river flow forecasting using wavelet ANN hybrid models
-
Pramanik N, Panda RK, Singh A (2010) Daily river flow forecasting using wavelet ANN hybrid models. J Hydroinformatics 13:49. doi:10.2166/hydro.2010.040
-
(2010)
J Hydroinformatics
, vol.13
, pp. 49
-
-
Pramanik, N.1
Panda, R.K.2
Singh, A.3
-
44
-
-
77955276087
-
Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
-
Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91. doi:10.1016/j.jhydrol.2010.06.033
-
(2010)
J Hydrol
, vol.390
, pp. 85-91
-
-
Adamowski, J.1
Sun, K.2
-
45
-
-
0036997582
-
Rainfall runoff modelling based on genetic programming
-
Babovic V, Keijzer M (2002) Rainfall runoff modelling based on genetic programming. Nord Hydrol 33:331–346
-
(2002)
Nord Hydrol
, vol.33
, pp. 331-346
-
-
Babovic, V.1
Keijzer, M.2
-
46
-
-
84976317076
-
Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran
-
Kashani MH, Ghorbani MA, Dinpashoh Y, Shahmorad S (2016) Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. J Hydrol 540:340–354. doi:10.1016/j.jhydrol.2016.06.028
-
(2016)
J Hydrol
, vol.540
, pp. 340-354
-
-
Kashani, M.H.1
Ghorbani, M.A.2
Dinpashoh, Y.3
Shahmorad, S.4
-
47
-
-
84880039120
-
Integrated artificial neural network (ANN) and stochastic dynamic programming (SDP) model for optimal release policy
-
Fayaed S, El-Shafie A, Jaafar O (2013) Integrated artificial neural network (ANN) and stochastic dynamic programming (SDP) model for optimal release policy. Water Resour Manag 27:3679–3696. doi:10.1007/s11269-013-0373-5
-
(2013)
Water Resour Manag
, vol.27
, pp. 3679-3696
-
-
Fayaed, S.1
El-Shafie, A.2
Jaafar, O.3
-
49
-
-
84904421004
-
Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
-
Chang F-J, Chen P-A, Lu Y-R et al (2014) Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J Hydrol 517:836–846. doi:10.1016/j.jhydrol.2014.06.013
-
(2014)
J Hydrol
, vol.517
, pp. 836-846
-
-
Chang, F.-J.1
Chen, P.-A.2
Lu, Y.-R.3
-
50
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
51
-
-
84856076556
-
Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes
-
Nourani V, Sayyah Fard M (2012) Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 47:127–146. doi:10.1016/j.advengsoft.2011.12.014
-
(2012)
Adv Eng Softw
, vol.47
, pp. 127-146
-
-
Nourani, V.1
Sayyah Fard, M.2
-
52
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42:513–529. doi:10.1109/TSMCB.2011.2168604
-
(2012)
IEEE Trans Syst Man Cybern B Cybern
, vol.42
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
53
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
54
-
-
84929299317
-
Extreme Learning Machines: a new approach for prediction of reference evapotranspiration
-
Abdullah SS, Malek MA, Abdullah NS et al (2015) Extreme Learning Machines: a new approach for prediction of reference evapotranspiration. J Hydrol 527:184–195. doi:10.1016/j.jhydrol.2015.04.073
-
(2015)
J Hydrol
, vol.527
, pp. 184-195
-
-
Abdullah, S.S.1
Malek, M.A.2
Abdullah, N.S.3
-
56
-
-
84907436729
-
Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images
-
Bencherif MA, Bazi Y, Member S et al (2015) Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images. Geosci Remote Sens Lett IEEE 12:527–531
-
(2015)
Geosci Remote Sens Lett IEEE
, vol.12
, pp. 527-531
-
-
Bencherif, M.A.1
Bazi, Y.2
Member, S.3
-
58
-
-
56049098499
-
Sales forecasting using extreme learning machine with applications in fashion retailing
-
Sun Z-L, Choi T-M, Au K-F, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46:411–419. doi:10.1016/j.dss.2008.07.009
-
(2008)
Decis Support Syst
, vol.46
, pp. 411-419
-
-
Sun, Z.-L.1
Choi, T.-M.2
Au, K.-F.3
Yu, Y.4
-
59
-
-
39449107168
-
Prediction of melting points of organic compounds using extreme learning machines
-
Bhat AU, Merchant SS, Bhagwat SS (2008) Prediction of melting points of organic compounds using extreme learning machines. Ind Eng Chem Res 47:920–925. doi:10.1021/ie0704647
-
(2008)
Ind Eng Chem Res
, vol.47
, pp. 920-925
-
-
Bhat, A.U.1
Merchant, S.S.2
Bhagwat, S.S.3
-
60
-
-
84922020238
-
Parallel online sequential extreme learning machine based on MapReduce
-
Wang B, Huang S, Qiu J et al (2015) Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 149:224–232. doi:10.1016/j.neucom.2014.03.076
-
(2015)
Neurocomputing
, vol.149
, pp. 224-232
-
-
Wang, B.1
Huang, S.2
Qiu, J.3
-
61
-
-
84918804553
-
Monthly discharge forecasting using wavelet neural networks with extreme learning machine—Springer
-
Li BJ, Cheng CT (2014) Monthly discharge forecasting using wavelet neural networks with extreme learning machine—Springer. Sci China Technol Sci 57:2441–2452. doi:10.1007/s11431-014-5712-0
-
(2014)
Sci China Technol Sci
, vol.57
, pp. 2441-2452
-
-
Li, B.J.1
Cheng, C.T.2
-
62
-
-
84954310363
-
An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
-
Deo RC, Şahin M (2016) An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environ Monit Assess. doi:10.1007/s10661-016-5094-9
-
(2016)
Environ Monit Assess
-
-
Deo, R.C.1
Şahin, M.2
-
63
-
-
84962783538
-
Forecasting daily streamflow using online sequential extreme learning machines
-
Lima AR, Cannon AJ, Hsieh WW (2016) Forecasting daily streamflow using online sequential extreme learning machines. J Hydrol 537:431–443. doi:10.1016/j.jhydrol.2016.03.017
-
(2016)
J Hydrol
, vol.537
, pp. 431-443
-
-
Lima, A.R.1
Cannon, A.J.2
Hsieh, W.W.3
-
64
-
-
84994591754
-
Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
-
Yaseen ZM, Jaafar O, Deo RC et al (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol. doi:10.1016/j.jhydrol.2016.09.035
-
(2016)
J Hydrol
-
-
Yaseen, Z.M.1
Jaafar, O.2
Deo, R.C.3
-
65
-
-
3142538909
-
Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
-
Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246–262. doi:10.1016/j.jhydrol.2004.03.027
-
(2004)
J Hydrol
, vol.295
, pp. 246-262
-
-
Moradkhani, H.1
Hsu, K.2
Gupta, H.V.3
Sorooshian, S.4
-
66
-
-
84930960542
-
Successive-station monthly streamflow prediction using different artificial neural network algorithms
-
Mehr AD, Kahya E, Şahin A, Nazemosadat MJ (2014) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol. doi:10.1007/s13762-014-0613-0
-
(2014)
Int J Environ Sci Technol
-
-
Mehr, A.D.1
Kahya, E.2
Şahin, A.3
Nazemosadat, M.J.4
-
68
-
-
55649086394
-
A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty
-
He L, Huang GH, Lu HW (2008) A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Adv Water Resour 31:1622–1635. doi:10.1016/j.advwatres.2008.07.009
-
(2008)
Adv Water Resour
, vol.31
, pp. 1622-1635
-
-
He, L.1
Huang, G.H.2
Lu, H.W.3
-
69
-
-
34548158996
-
Convex incremental extreme learning machine
-
Bin Huang G, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062. doi:10.1016/j.neucom.2007.02.009
-
(2007)
Neurocomputing
, vol.70
, pp. 3056-3062
-
-
Bin, H.G.1
Chen, L.2
-
70
-
-
84954350212
-
RBFNN-based model for heavy metal prediction for different climatic and pollution conditions
-
Elzwayie A, El-shafie A, Yaseen ZM et al (2016) RBFNN-based model for heavy metal prediction for different climatic and pollution conditions. Neural Comput Appl. doi:10.1007/s00521-015-2174-7
-
(2016)
Neural Comput Appl
-
-
Elzwayie, A.1
El-shafie, A.2
Yaseen, Z.M.3
-
71
-
-
84925489228
-
ANN based sediment prediction model utilizing different input scenarios
-
Afan HA, El-Shafie A, Yaseen ZM et al (2014) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. doi:10.1007/s11269-014-0870-1
-
(2014)
Water Resour Manag
, vol.29
, pp. 1231-1245
-
-
Afan, H.A.1
El-Shafie, A.2
Yaseen, Z.M.3
-
72
-
-
84945157492
-
Artificial intelligence based models for stream-flow forecasting: 2000–2015
-
Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. doi:10.1016/j.jhydrol.2015.10.038
-
(2015)
J Hydrol
, vol.530
, pp. 829-844
-
-
Yaseen, Z.M.1
El-shafie, A.2
Jaafar, O.3
-
73
-
-
84900481738
-
Applications of hybrid wavelet-artificial intelligence models in hydrology: a review
-
Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. doi:10.1016/j.jhydrol.2014.03.057
-
(2014)
J Hydrol
, vol.514
, pp. 358-377
-
-
Nourani, V.1
Hosseini Baghanam, A.2
Adamowski, J.3
Kisi, O.4
-
74
-
-
0032920124
-
Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
-
Legates DR Jr, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241
-
(1999)
Water Resour Res
, vol.35
, pp. 233-241
-
-
Legates, D.R.1
McCabe, G.J.2
-
75
-
-
0000562670
-
Decomposition of hardy functions into square integrable wavelets of constant shape
-
Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736. doi:10.1137/0515056
-
(1984)
SIAM J Math Anal
, vol.15
, pp. 723-736
-
-
Grossmann, A.1
Morlet, J.2
-
76
-
-
0024487978
-
A robust orthogonal algorithm for system identification and time-series analysis
-
Korenberg MJ (1989) A robust orthogonal algorithm for system identification and time-series analysis. Biol Cybern 60:267–276. doi:10.1007/BF00204124
-
(1989)
Biol Cybern
, vol.60
, pp. 267-276
-
-
Korenberg, M.J.1
-
77
-
-
0031515615
-
Complete orthogonal decomposition for weighted least squares
-
Hough PD, Vavasis SA (1997) Complete orthogonal decomposition for weighted least squares. SIAM J Matrix Anal Appl 18:369–392
-
(1997)
SIAM J Matrix Anal Appl
, vol.18
, pp. 369-392
-
-
Hough, P.D.1
Vavasis, S.A.2
|