메뉴 건너뛰기




Volumn 30, Issue 5, 2018, Pages 1479-1491

Non-tuned machine learning approach for hydrological time series forecasting

Author keywords

Artificial neural network; Extreme learning machine; Multiple time horizons; Stream flow forecasting; Tropical environment

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; FORECASTING; KNOWLEDGE ACQUISITION; MEAN SQUARE ERROR; NETWORK LAYERS; NEURAL NETWORKS; STREAM FLOW;

EID: 85006356473     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-016-2763-0     Document Type: Article
Times cited : (88)

References (77)
  • 1
    • 78650584376 scopus 로고    scopus 로고
    • Fuzzy neural networks for water level and discharge forecasting with uncertainty
    • Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26:523–537. doi:10.1016/j.envsoft.2010.10.016
    • (2011) Environ Model Softw , vol.26 , pp. 523-537
    • Alvisi, S.1    Franchini, M.2
  • 2
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318:7–16. doi:10.1016/j.jhydrol.2005.06.001
    • (2006) J Hydrol , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 3
    • 84868623982 scopus 로고    scopus 로고
    • Streamflow forecasting by SVM with quantum behaved particle swarm optimization
    • Ch S, Anand N, Panigrahi BK, Mathur S (2013) Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23. doi:10.1016/j.neucom.2012.07.017
    • (2013) Neurocomputing , vol.101 , pp. 18-23
    • Ch, S.1    Anand, N.2    Panigrahi, B.K.3    Mathur, S.4
  • 4
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang FJ, Chen YC (2001) A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J Hydrol 245:153–164. doi:10.1016/S0022-1694(01)00350-X
    • (2001) J Hydrol , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 5
    • 84907815736 scopus 로고    scopus 로고
    • Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions
    • Maier HR, Kapelan Z, Kasprzyk J et al (2014) Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ Model Softw 62:271–299. doi:10.1016/j.envsoft.2014.09.013
    • (2014) Environ Model Softw , vol.62 , pp. 271-299
    • Maier, H.R.1    Kapelan, Z.2    Kasprzyk, J.3
  • 6
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124. doi:10.1016/S1364-8152(99)00007-9
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 7
    • 0025429495 scopus 로고
    • Effect of drought on streamflow characteristics
    • Chang TJ (1990) Effect of drought on streamflow characteristics. Eng J Irrig Drain 116:332–341
    • (1990) Eng J Irrig Drain , vol.116 , pp. 332-341
    • Chang, T.J.1
  • 8
    • 0031981273 scopus 로고    scopus 로고
    • A monthly streamflow model
    • Mohseni O, Stefan HG (1998) A monthly streamflow model. Water Resour Res 34:1287–1298. doi:10.1029/97WR02944
    • (1998) Water Resour Res , vol.34 , pp. 1287-1298
    • Mohseni, O.1    Stefan, H.G.2
  • 9
    • 0036986226 scopus 로고    scopus 로고
    • Modeling streamflow from artificially drained agricultural watersheds in Illinois
    • Sogbedji JM, McIsaac GF (2002) Modeling streamflow from artificially drained agricultural watersheds in Illinois. J Am Water Resour Assoc 38:1753–1765. doi:10.1111/j.1752-1688.2002.tb04379.x
    • (2002) J Am Water Resour Assoc , vol.38 , pp. 1753-1765
    • Sogbedji, J.M.1    McIsaac, G.F.2
  • 10
    • 84873051854 scopus 로고    scopus 로고
    • Streamflow modelling: a primer on applications, approaches and challenges
    • Bourdin DR, Fleming SW, Stull RB (2012) Streamflow modelling: a primer on applications, approaches and challenges. Atmos Ocean 50:507–536. doi:10.1080/07055900.2012.734276
    • (2012) Atmos Ocean , vol.50 , pp. 507-536
    • Bourdin, D.R.1    Fleming, S.W.2    Stull, R.B.3
  • 11
    • 84978032438 scopus 로고    scopus 로고
    • Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence
    • Yaseen ZM, Kisi O, Demir V (2016) Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence. Water Resour Manag. doi:10.1007/s11269-016-1408-5
    • (2016) Water Resour Manag
    • Yaseen, Z.M.1    Kisi, O.2    Demir, V.3
  • 14
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441. doi:10.1016/j.jhydrol.2012.11.017
    • (2013) J Hydrol , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 15
    • 84869052207 scopus 로고    scopus 로고
    • Monthly inflow forecasting using autoregressive artificial neural network
    • Valipour M, Banihabib M, Behbahani S (2012) Monthly inflow forecasting using autoregressive artificial neural network. J Appl Sci 12:2139–2147
    • (2012) J Appl Sci , vol.12 , pp. 2139-2147
    • Valipour, M.1    Banihabib, M.2    Behbahani, S.3
  • 16
    • 84936985967 scopus 로고    scopus 로고
    • Long-term runoff study using SARIMA and ARIMA models in the United States
    • Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl n/a-n/a. doi:10.1002/met.1491
    • (2015) Meteorol Appl n/a-n/a
    • Valipour, M.1
  • 17
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • Hsu K, Gupta HV, Gao X et al (2002) Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resour Res. doi:10.1029/2001WR000795
    • (2002) Water Resour Res
    • Hsu, K.1    Gupta, H.V.2    Gao, X.3
  • 18
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu HK (2005) Application of generalized regression neural networks to intermittent flow forecasting and estimation. J Hydrol Eng 10:336–341. doi:10.1061/(ASCE)1084-0699(2005)10:4(336)
    • (2005) J Hydrol Eng , vol.10 , pp. 336-341
    • Cigizoglu, H.K.1
  • 19
    • 18744366631 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting watershed runoff and stream flows
    • Wu JS, Han J, Annambhotla S, Bryant S (2005) Artificial neural networks for forecasting watershed runoff and stream flows. J Hydrol Eng 10:216–222. doi:10.1061/(ASCE)1084-0699(2005)10:3(216)
    • (2005) J Hydrol Eng , vol.10 , pp. 216-222
    • Wu, J.S.1    Han, J.2    Annambhotla, S.3    Bryant, S.4
  • 20
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12:532–539. doi:10.1061/(ASCE)1084-0699(2007)12:5(532)
    • (2007) J Hydrol Eng , vol.12 , pp. 532-539
    • Kişi, Ö.1
  • 21
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic streamflow generation
    • Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic streamflow generation. Water Resour Manag 21:1015–1029. doi:10.1007/s11269-006-9070-y
    • (2007) Water Resour Manag , vol.21 , pp. 1015-1029
    • Ahmed, J.A.1    Sarma, A.K.2
  • 22
    • 77957016230 scopus 로고    scopus 로고
    • Application of radial basis function neural networks to short-term streamflow forecasting
    • Kagoda PA, Ndiritu J, Ntuli C, Mwaka B (2010) Application of radial basis function neural networks to short-term streamflow forecasting. Phys Chem Earth 35:571–581. doi:10.1016/j.pce.2010.07.021
    • (2010) Phys Chem Earth , vol.35 , pp. 571-581
    • Kagoda, P.A.1    Ndiritu, J.2    Ntuli, C.3    Mwaka, B.4
  • 23
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J Hydrol Eng 15:275–283. doi:10.1061/(ASCE)HE.1943-5584.0000188
    • (2010) J Hydrol Eng , vol.15 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3
  • 24
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and applications
    • Dibike Yonas B, Velickov Slavco, Solomatine Dimitri, Abbott MB (2001) Model induction with support vector machines: introduction and applications. J Comput Civ Eng 15:208–216
    • (2001) J Comput Civ Eng , vol.15 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 25
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modeling
    • Behzad M, Asghari K, Eazi M, Palhang M (2009) Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl 36:7624–7629. doi:10.1016/j.eswa.2008.09.053
    • (2009) Expert Syst Appl , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 26
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori R, Karbassi AR, Moghaddamnia A et al (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J Hydrol 401:177–189. doi:10.1016/j.jhydrol.2011.02.021
    • (2011) J Hydrol , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3
  • 27
    • 65349101737 scopus 로고    scopus 로고
    • Using oceanic-atmospheric oscillations for long lead time streamflow forecasting
    • Kalra A, Ahmad S (2009) Using oceanic-atmospheric oscillations for long lead time streamflow forecasting. Water Resour Res 45:1–18. doi:10.1029/2008WR006855
    • (2009) Water Resour Res , vol.45 , pp. 1-18
    • Kalra, A.1    Ahmad, S.2
  • 28
    • 84890351420 scopus 로고    scopus 로고
    • A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
    • He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386. doi:10.1016/j.jhydrol.2013.11.054
    • (2014) J Hydrol , vol.509 , pp. 379-386
    • He, Z.1    Wen, X.2    Liu, H.3    Du, J.4
  • 29
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour Manag 21:533–556
    • (2007) Water Resour Manag , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 30
    • 36649032078 scopus 로고    scopus 로고
    • Rainfall-runoff modeling through hybrid intelligent system
    • Nayak PC, Sudheer KP, Jain SK (2007) Rainfall-runoff modeling through hybrid intelligent system. Water Resour Res 43:1–17. doi:10.1029/2006WR004930
    • (2007) Water Resour Res , vol.43 , pp. 1-17
    • Nayak, P.C.1    Sudheer, K.P.2    Jain, S.K.3
  • 31
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik N, Panda RK (2009) Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol Sci J 54:247–260. doi:10.1623/hysj.54.2.247
    • (2009) Hydrol Sci J , vol.54 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 32
    • 84859108726 scopus 로고    scopus 로고
    • River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches
    • Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manag 26:1715–1729. doi:10.1007/s11269-012-9982-7
    • (2012) Water Resour Manag , vol.26 , pp. 1715-1729
    • Sanikhani, H.1    Kisi, O.2
  • 33
    • 84910653625 scopus 로고    scopus 로고
    • Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C ++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed
    • Sharma S, Srivastava P, Fang X, Kalin L (2015) Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C ++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed. Expert Syst Appl 42:2213–2223. doi:10.1016/j.eswa.2014.09.062
    • (2015) Expert Syst Appl , vol.42 , pp. 2213-2223
    • Sharma, S.1    Srivastava, P.2    Fang, X.3    Kalin, L.4
  • 34
    • 0035105632 scopus 로고    scopus 로고
    • Modelling rainfall-runoff using genetic programming
    • Whigham PA, Crapper PF (2001) Modelling rainfall-runoff using genetic programming. Math Comput Model 33:707–721. doi:10.1016/S0895-7177(00)00274-0
    • (2001) Math Comput Model , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 35
    • 40849130727 scopus 로고    scopus 로고
    • Short-term streamflow forecasting with global climate change implications—a comparative study between genetic programming and neural network models
    • Makkeasorn A, Chang NB, Zhou X (2008) Short-term streamflow forecasting with global climate change implications—a comparative study between genetic programming and neural network models. J Hydrol 352:336–354. doi:10.1016/j.jhydrol.2008.01.023
    • (2008) J Hydrol , vol.352 , pp. 336-354
    • Makkeasorn, A.1    Chang, N.B.2    Zhou, X.3
  • 36
    • 70349753109 scopus 로고    scopus 로고
    • Linear genetic programming for time-series modelling of daily flow rate
    • Guven A (2009) Linear genetic programming for time-series modelling of daily flow rate. J Earth Syst Sci 118:137–146. doi:10.1007/s12040-009-0022-9
    • (2009) J Earth Syst Sci , vol.118 , pp. 137-146
    • Guven, A.1
  • 37
    • 78349309407 scopus 로고    scopus 로고
    • Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection
    • Kashid SS, Ghosh S, Maity R (2010) Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection. J Hydrol 395:23–38. doi:10.1016/j.jhydrol.2010.10.004
    • (2010) J Hydrol , vol.395 , pp. 23-38
    • Kashid, S.S.1    Ghosh, S.2    Maity, R.3
  • 38
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • Kisi O, Shiri J, Tombul M (2013) Modeling rainfall-runoff process using soft computing techniques. Comput Geosci 51:108–117. doi:10.1016/j.cageo.2012.07.001
    • (2013) Comput Geosci , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Tombul, M.3
  • 39
    • 84892477888 scopus 로고    scopus 로고
    • Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network
    • Sahay RR, Srivastava A (2014) Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Water Resour Manag 28:301–317. doi:10.1007/s11269-013-0446-5
    • (2014) Water Resour Manag , vol.28 , pp. 301-317
    • Sahay, R.R.1    Srivastava, A.2
  • 40
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process
    • Nourani V, Kisi Ö, Komasi M (2011) Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J Hydrol 402:41–59. doi:10.1016/j.jhydrol.2011.03.002
    • (2011) J Hydrol , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 41
    • 84911986380 scopus 로고    scopus 로고
    • Successive-station monthly streamflow prediction using neuro-wavelet technique
    • Danandeh Mehr A, Kahya E, Bagheri F, Deliktas E (2013) Successive-station monthly streamflow prediction using neuro-wavelet technique. Earth Sci Inform. doi:10.1007/s12145-013-0141-3
    • (2013) Earth Sci Inform
    • Danandeh Mehr, A.1    Kahya, E.2    Bagheri, F.3    Deliktas, E.4
  • 42
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140. doi:10.1016/j.jhydrol.2010.12.041
    • (2011) J Hydrol , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 43
    • 78651297519 scopus 로고    scopus 로고
    • Daily river flow forecasting using wavelet ANN hybrid models
    • Pramanik N, Panda RK, Singh A (2010) Daily river flow forecasting using wavelet ANN hybrid models. J Hydroinformatics 13:49. doi:10.2166/hydro.2010.040
    • (2010) J Hydroinformatics , vol.13 , pp. 49
    • Pramanik, N.1    Panda, R.K.2    Singh, A.3
  • 44
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91. doi:10.1016/j.jhydrol.2010.06.033
    • (2010) J Hydrol , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 45
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall runoff modelling based on genetic programming
    • Babovic V, Keijzer M (2002) Rainfall runoff modelling based on genetic programming. Nord Hydrol 33:331–346
    • (2002) Nord Hydrol , vol.33 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 46
    • 84976317076 scopus 로고    scopus 로고
    • Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran
    • Kashani MH, Ghorbani MA, Dinpashoh Y, Shahmorad S (2016) Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. J Hydrol 540:340–354. doi:10.1016/j.jhydrol.2016.06.028
    • (2016) J Hydrol , vol.540 , pp. 340-354
    • Kashani, M.H.1    Ghorbani, M.A.2    Dinpashoh, Y.3    Shahmorad, S.4
  • 47
    • 84880039120 scopus 로고    scopus 로고
    • Integrated artificial neural network (ANN) and stochastic dynamic programming (SDP) model for optimal release policy
    • Fayaed S, El-Shafie A, Jaafar O (2013) Integrated artificial neural network (ANN) and stochastic dynamic programming (SDP) model for optimal release policy. Water Resour Manag 27:3679–3696. doi:10.1007/s11269-013-0373-5
    • (2013) Water Resour Manag , vol.27 , pp. 3679-3696
    • Fayaed, S.1    El-Shafie, A.2    Jaafar, O.3
  • 49
    • 84904421004 scopus 로고    scopus 로고
    • Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
    • Chang F-J, Chen P-A, Lu Y-R et al (2014) Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J Hydrol 517:836–846. doi:10.1016/j.jhydrol.2014.06.013
    • (2014) J Hydrol , vol.517 , pp. 836-846
    • Chang, F.-J.1    Chen, P.-A.2    Lu, Y.-R.3
  • 50
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 51
    • 84856076556 scopus 로고    scopus 로고
    • Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes
    • Nourani V, Sayyah Fard M (2012) Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 47:127–146. doi:10.1016/j.advengsoft.2011.12.014
    • (2012) Adv Eng Softw , vol.47 , pp. 127-146
    • Nourani, V.1    Sayyah Fard, M.2
  • 52
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42:513–529. doi:10.1109/TSMCB.2011.2168604
    • (2012) IEEE Trans Syst Man Cybern B Cybern , vol.42 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 53
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 54
    • 84929299317 scopus 로고    scopus 로고
    • Extreme Learning Machines: a new approach for prediction of reference evapotranspiration
    • Abdullah SS, Malek MA, Abdullah NS et al (2015) Extreme Learning Machines: a new approach for prediction of reference evapotranspiration. J Hydrol 527:184–195. doi:10.1016/j.jhydrol.2015.04.073
    • (2015) J Hydrol , vol.527 , pp. 184-195
    • Abdullah, S.S.1    Malek, M.A.2    Abdullah, N.S.3
  • 55
    • 84899896987 scopus 로고    scopus 로고
    • Ensemble extreme learning machines for hyperspectral image classification
    • Samat A, Du P, Member S et al (2014) Ensemble extreme learning machines for hyperspectral image classification. Sel Top Appl Earth Obs Remote Sensing, IEEE J 7:1060–1069
    • (2014) Sel Top Appl Earth Obs Remote Sensing, IEEE J , vol.7 , pp. 1060-1069
    • Samat, A.1    Du, P.2    Member, S.3
  • 56
    • 84907436729 scopus 로고    scopus 로고
    • Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images
    • Bencherif MA, Bazi Y, Member S et al (2015) Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images. Geosci Remote Sens Lett IEEE 12:527–531
    • (2015) Geosci Remote Sens Lett IEEE , vol.12 , pp. 527-531
    • Bencherif, M.A.1    Bazi, Y.2    Member, S.3
  • 58
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Sun Z-L, Choi T-M, Au K-F, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46:411–419. doi:10.1016/j.dss.2008.07.009
    • (2008) Decis Support Syst , vol.46 , pp. 411-419
    • Sun, Z.-L.1    Choi, T.-M.2    Au, K.-F.3    Yu, Y.4
  • 59
    • 39449107168 scopus 로고    scopus 로고
    • Prediction of melting points of organic compounds using extreme learning machines
    • Bhat AU, Merchant SS, Bhagwat SS (2008) Prediction of melting points of organic compounds using extreme learning machines. Ind Eng Chem Res 47:920–925. doi:10.1021/ie0704647
    • (2008) Ind Eng Chem Res , vol.47 , pp. 920-925
    • Bhat, A.U.1    Merchant, S.S.2    Bhagwat, S.S.3
  • 60
    • 84922020238 scopus 로고    scopus 로고
    • Parallel online sequential extreme learning machine based on MapReduce
    • Wang B, Huang S, Qiu J et al (2015) Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 149:224–232. doi:10.1016/j.neucom.2014.03.076
    • (2015) Neurocomputing , vol.149 , pp. 224-232
    • Wang, B.1    Huang, S.2    Qiu, J.3
  • 61
    • 84918804553 scopus 로고    scopus 로고
    • Monthly discharge forecasting using wavelet neural networks with extreme learning machine—Springer
    • Li BJ, Cheng CT (2014) Monthly discharge forecasting using wavelet neural networks with extreme learning machine—Springer. Sci China Technol Sci 57:2441–2452. doi:10.1007/s11431-014-5712-0
    • (2014) Sci China Technol Sci , vol.57 , pp. 2441-2452
    • Li, B.J.1    Cheng, C.T.2
  • 62
    • 84954310363 scopus 로고    scopus 로고
    • An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
    • Deo RC, Şahin M (2016) An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environ Monit Assess. doi:10.1007/s10661-016-5094-9
    • (2016) Environ Monit Assess
    • Deo, R.C.1    Şahin, M.2
  • 63
    • 84962783538 scopus 로고    scopus 로고
    • Forecasting daily streamflow using online sequential extreme learning machines
    • Lima AR, Cannon AJ, Hsieh WW (2016) Forecasting daily streamflow using online sequential extreme learning machines. J Hydrol 537:431–443. doi:10.1016/j.jhydrol.2016.03.017
    • (2016) J Hydrol , vol.537 , pp. 431-443
    • Lima, A.R.1    Cannon, A.J.2    Hsieh, W.W.3
  • 64
    • 84994591754 scopus 로고    scopus 로고
    • Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
    • Yaseen ZM, Jaafar O, Deo RC et al (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol. doi:10.1016/j.jhydrol.2016.09.035
    • (2016) J Hydrol
    • Yaseen, Z.M.1    Jaafar, O.2    Deo, R.C.3
  • 65
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246–262. doi:10.1016/j.jhydrol.2004.03.027
    • (2004) J Hydrol , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 66
    • 84930960542 scopus 로고    scopus 로고
    • Successive-station monthly streamflow prediction using different artificial neural network algorithms
    • Mehr AD, Kahya E, Şahin A, Nazemosadat MJ (2014) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol. doi:10.1007/s13762-014-0613-0
    • (2014) Int J Environ Sci Technol
    • Mehr, A.D.1    Kahya, E.2    Şahin, A.3    Nazemosadat, M.J.4
  • 68
    • 55649086394 scopus 로고    scopus 로고
    • A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty
    • He L, Huang GH, Lu HW (2008) A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Adv Water Resour 31:1622–1635. doi:10.1016/j.advwatres.2008.07.009
    • (2008) Adv Water Resour , vol.31 , pp. 1622-1635
    • He, L.1    Huang, G.H.2    Lu, H.W.3
  • 69
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Bin Huang G, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062. doi:10.1016/j.neucom.2007.02.009
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Bin, H.G.1    Chen, L.2
  • 70
    • 84954350212 scopus 로고    scopus 로고
    • RBFNN-based model for heavy metal prediction for different climatic and pollution conditions
    • Elzwayie A, El-shafie A, Yaseen ZM et al (2016) RBFNN-based model for heavy metal prediction for different climatic and pollution conditions. Neural Comput Appl. doi:10.1007/s00521-015-2174-7
    • (2016) Neural Comput Appl
    • Elzwayie, A.1    El-shafie, A.2    Yaseen, Z.M.3
  • 71
    • 84925489228 scopus 로고    scopus 로고
    • ANN based sediment prediction model utilizing different input scenarios
    • Afan HA, El-Shafie A, Yaseen ZM et al (2014) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. doi:10.1007/s11269-014-0870-1
    • (2014) Water Resour Manag , vol.29 , pp. 1231-1245
    • Afan, H.A.1    El-Shafie, A.2    Yaseen, Z.M.3
  • 72
    • 84945157492 scopus 로고    scopus 로고
    • Artificial intelligence based models for stream-flow forecasting: 2000–2015
    • Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. doi:10.1016/j.jhydrol.2015.10.038
    • (2015) J Hydrol , vol.530 , pp. 829-844
    • Yaseen, Z.M.1    El-shafie, A.2    Jaafar, O.3
  • 73
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-artificial intelligence models in hydrology: a review
    • Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. doi:10.1016/j.jhydrol.2014.03.057
    • (2014) J Hydrol , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 74
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
    • Legates DR Jr, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241
    • (1999) Water Resour Res , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 75
    • 0000562670 scopus 로고
    • Decomposition of hardy functions into square integrable wavelets of constant shape
    • Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736. doi:10.1137/0515056
    • (1984) SIAM J Math Anal , vol.15 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 76
    • 0024487978 scopus 로고
    • A robust orthogonal algorithm for system identification and time-series analysis
    • Korenberg MJ (1989) A robust orthogonal algorithm for system identification and time-series analysis. Biol Cybern 60:267–276. doi:10.1007/BF00204124
    • (1989) Biol Cybern , vol.60 , pp. 267-276
    • Korenberg, M.J.1
  • 77
    • 0031515615 scopus 로고    scopus 로고
    • Complete orthogonal decomposition for weighted least squares
    • Hough PD, Vavasis SA (1997) Complete orthogonal decomposition for weighted least squares. SIAM J Matrix Anal Appl 18:369–392
    • (1997) SIAM J Matrix Anal Appl , vol.18 , pp. 369-392
    • Hough, P.D.1    Vavasis, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.