메뉴 건너뛰기




Volumn 517, Issue , 2014, Pages 836-846

Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control

Author keywords

Artificial neural networks (ANNs); Flood forecast; Floodwater storage pond (FSP); Gamma test; Nonlinear autoregressive network with exogenous inputs (NARX); Urban flood control

Indexed keywords

FLOOD FORECAST; FLOODWATER STORAGE POND (FSP); GAMMA TEST; NONLINEAR AUTOREGRESSIVE NETWORK WITH EXOGENOUS INPUTS; URBAN FLOOD CONTROL;

EID: 84904421004     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2014.06.013     Document Type: Article
Times cited : (206)

References (43)
  • 2
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin
    • Akhtar M.K., Corzo G.A., van Andel S.J., Jonoski A. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrol. Earth Syst. Sci. 2009, 13:1607-1618.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1607-1618
    • Akhtar, M.K.1    Corzo, G.A.2    van Andel, S.J.3    Jonoski, A.4
  • 3
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
    • Ali Ghorbani M., Khatibi R., Aytek A., Makarynskyy O., Shiri J. Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Comput. Geosci. 2010, 36(5):620-627.
    • (2010) Comput. Geosci. , vol.36 , Issue.5 , pp. 620-627
    • Ali Ghorbani, M.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 4
    • 33344463490 scopus 로고    scopus 로고
    • Water level forecasting through fuzzy logic and artificial neural network approaches
    • Alvisi S., Mascellani G., Franchini M., Bardossy A. Water level forecasting through fuzzy logic and artificial neural network approaches. Hydro. Earth Syst. Sci. 2006, 10(1):1-17.
    • (2006) Hydro. Earth Syst. Sci. , vol.10 , Issue.1 , pp. 1-17
    • Alvisi, S.1    Mascellani, G.2    Franchini, M.3    Bardossy, A.4
  • 5
    • 33646260221 scopus 로고    scopus 로고
    • Study of the behavior of a new boosting algorithm for recurrent neural networks
    • Assaad M., Bone´ R., Cardot H. Study of the behavior of a new boosting algorithm for recurrent neural networks. Lect. Notes Comput. Sci. 2005, 169-174.
    • (2005) Lect. Notes Comput. Sci. , pp. 169-174
    • Assaad, M.1    Bone´, R.2    Cardot, H.3
  • 6
    • 77952241177 scopus 로고    scopus 로고
    • Advances in ungauged streamflow prediction using artificial neural networks
    • Besaw L.E., Rizzo D.M., Bierman P.R., Hackett W.R. Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol. 2010, 386(1-4):27-37.
    • (2010) J. Hydrol. , vol.386 , Issue.1-4 , pp. 27-37
    • Besaw, L.E.1    Rizzo, D.M.2    Bierman, P.R.3    Hackett, W.R.4
  • 7
    • 33750095418 scopus 로고    scopus 로고
    • Combined hydraulic and black-box models for flood forecasting in urban drainage systems
    • Bruen M., Yang J.Q. Combined hydraulic and black-box models for flood forecasting in urban drainage systems. J. Hydrol. Eng. 2006, 11(6):589-596.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.6 , pp. 589-596
    • Bruen, M.1    Yang, J.Q.2
  • 8
    • 47949123659 scopus 로고    scopus 로고
    • Counterpropagation fuzzy-neural network for city flood control system
    • Chang F.J., Chang K.Y., Chang L.C. Counterpropagation fuzzy-neural network for city flood control system. J. Hydrol. 2008, 358(1):24-34.
    • (2008) J. Hydrol. , vol.358 , Issue.1 , pp. 24-34
    • Chang, F.J.1    Chang, K.Y.2    Chang, L.C.3
  • 9
    • 84875900575 scopus 로고    scopus 로고
    • A reinforced two-step-ahead weight adjustment technique for on-line training of recurrent neural networks
    • Chang L.C., Chen P.A., Chang F.J. A reinforced two-step-ahead weight adjustment technique for on-line training of recurrent neural networks. IEEE Trans. Neural Network Learn. Syst. 2012, 23(8):1269-1278.
    • (2012) IEEE Trans. Neural Network Learn. Syst. , vol.23 , Issue.8 , pp. 1269-1278
    • Chang, L.C.1    Chen, P.A.2    Chang, F.J.3
  • 10
    • 84881097497 scopus 로고    scopus 로고
    • Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling
    • Chang F.J., Chen P.A., Liu C.W., Liao V.H.C., Liao C.M. Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. J. Hydrol. 2013, 499:265-274.
    • (2013) J. Hydrol. , vol.499 , pp. 265-274
    • Chang, F.J.1    Chen, P.A.2    Liu, C.W.3    Liao, V.H.C.4    Liao, C.M.5
  • 11
    • 84879431382 scopus 로고    scopus 로고
    • Reinforced recurrent neural networks for multi-step-ahead flood forecasts
    • Chen P.A., Chang L.C., Chang F.J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts. J. Hydrol. 2013, 497:71-79.
    • (2013) J. Hydrol. , vol.497 , pp. 71-79
    • Chen, P.A.1    Chang, L.C.2    Chang, F.J.3
  • 12
    • 77954724126 scopus 로고    scopus 로고
    • Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites
    • Chiang Y.M., Chang L.C., Tsai M.J., Wang Y.F., Chang F.J. Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites. Hydrol. Earth Syst. Sci. 2010, 14(7):1309-1319.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , Issue.7 , pp. 1309-1319
    • Chiang, Y.M.1    Chang, L.C.2    Tsai, M.J.3    Wang, Y.F.4    Chang, F.J.5
  • 13
    • 19744362941 scopus 로고    scopus 로고
    • Nonstationary hydrological timeseries forecasting using nonlinear dynamic methods
    • Coulibaly P., Baldwin C.K. Nonstationary hydrological timeseries forecasting using nonlinear dynamic methods. J. Hydrol. 2005, 307(1-4):164-174.
    • (2005) J. Hydrol. , vol.307 , Issue.1-4 , pp. 164-174
    • Coulibaly, P.1    Baldwin, C.K.2
  • 14
    • 34250818666 scopus 로고    scopus 로고
    • Comparison of neural network methods for infilling missing daily weather records
    • Coulibaly P., Evora N.D. Comparison of neural network methods for infilling missing daily weather records. J. Hydrol. 2007, 341(1-2):27-41.
    • (2007) J. Hydrol. , vol.341 , Issue.1-2 , pp. 27-41
    • Coulibaly, P.1    Evora, N.D.2
  • 15
    • 84904432211 scopus 로고    scopus 로고
    • Drainage Services Department, Stormwater drainage manual - planning, design and management, third ed. Hong Kong.
    • DSD, Drainage Services Department, 2000. Stormwater drainage manual - planning, design and management, third ed. Hong Kong.
    • (2000)
  • 17
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognit. Sci. 1990, 14:179-211.
    • (1990) Cognit. Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 18
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok, Thailand
    • Hung N.Q., Babel M.S., Weesakul S., Tripathi N.K. An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci. 2009, 13:1413-1425.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 19
    • 79960718974 scopus 로고    scopus 로고
    • Sunspot forecasting by using Chaotic time series analysis and NARX network
    • Jiang C., Song F. Sunspot forecasting by using Chaotic time series analysis and NARX network. J. Chem. Phys. 2011, 6:1424-1429.
    • (2011) J. Chem. Phys. , vol.6 , pp. 1424-1429
    • Jiang, C.1    Song, F.2
  • 20
    • 0003432695 scopus 로고    scopus 로고
    • PhD thesis, Department of computing, Imperial College of Science, Technology and Medicine, University of London.
    • Koncar, N., 1997. Optimisation methodologies for direct inverse neurocontrol. PhD thesis, Department of computing, Imperial College of Science, Technology and Medicine, University of London.
    • (1997) Optimisation methodologies for direct inverse neurocontrol
    • Koncar, N.1
  • 21
    • 0032123428 scopus 로고    scopus 로고
    • How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies
    • Lin T., Horne B.G., Giles C.L. How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies. Neural Networks 1998, 11(5):861-868.
    • (1998) Neural Networks , vol.11 , Issue.5 , pp. 861-868
    • Lin, T.1    Horne, B.G.2    Giles, C.L.3
  • 23
    • 43649096310 scopus 로고    scopus 로고
    • Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
    • Ma Q.L., Zheng Q.L., Peng H., Zhong T.W., Qin J.W. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network. Chin. Phys. B 2008, 17(2):536-542.
    • (2008) Chin. Phys. B , vol.17 , Issue.2 , pp. 536-542
    • Ma, Q.L.1    Zheng, Q.L.2    Peng, H.3    Zhong, T.W.4    Qin, J.W.5
  • 24
    • 40049108152 scopus 로고    scopus 로고
    • Basin-scale stream-flow forecasting using the information of large-scale atmospheric circulation phenomena
    • Maity R., Kumar D.N. Basin-scale stream-flow forecasting using the information of large-scale atmospheric circulation phenomena. Hydrol. Process. 2008, 22(5):643-650.
    • (2008) Hydrol. Process. , vol.22 , Issue.5 , pp. 643-650
    • Maity, R.1    Kumar, D.N.2
  • 25
    • 4544314347 scopus 로고    scopus 로고
    • Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia
    • Makarynskyy O., Makarynska D., Kuhn M., Featherstone W.E. Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia. Estuarine Coastal Shelf Sci. 2004, 61(2):351-360.
    • (2004) Estuarine Coastal Shelf Sci. , vol.61 , Issue.2 , pp. 351-360
    • Makarynskyy, O.1    Makarynska, D.2    Kuhn, M.3    Featherstone, W.E.4
  • 26
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: an empirical evaluation
    • Menezes J.M.P., Barreto G.A. Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 2008, 71(16-18):3335-3343.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3335-3343
    • Menezes, J.M.P.1    Barreto, G.A.2
  • 27
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques
    • Moghaddamnia A., GhafariGousheh M., Piri J., Amin S., Han D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour. 2009, 32:88-97.
    • (2009) Adv. Water Resour. , vol.32 , pp. 88-97
    • Moghaddamnia, A.1    GhafariGousheh, M.2    Piri, J.3    Amin, S.4    Han, D.5
  • 28
    • 80054780529 scopus 로고    scopus 로고
    • Improving long-range hydrological forecasts with extended Kalman filters
    • Muluye G.Y. Improving long-range hydrological forecasts with extended Kalman filters. Hydrol. Sci. J. 2011, 56(7):1118-1128.
    • (2011) Hydrol. Sci. J. , vol.56 , Issue.7 , pp. 1118-1128
    • Muluye, G.Y.1
  • 29
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: 1. A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: 1. A discussion of principles. J. Hydrol. 1970, 10:282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 30
    • 44949191403 scopus 로고    scopus 로고
    • Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network
    • Nasseri M., Asghari K., Abedini M.J. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Syst. Appl. 2008, 35(3):1415-1421.
    • (2008) Expert Syst. Appl. , vol.35 , Issue.3 , pp. 1415-1421
    • Nasseri, M.1    Asghari, K.2    Abedini, M.J.3
  • 31
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291(1-2):52-66.
    • (2004) J. Hydrol. , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 32
    • 84877830096 scopus 로고    scopus 로고
    • Rainfall runoff modelling using conceptual, data driven and wavelet based computing approach
    • Nayak P.C., Venkatesh B., Krishna B., Jain S.K. Rainfall runoff modelling using conceptual, data driven and wavelet based computing approach. J. Hydrol. 2013, 493:57-67.
    • (2013) J. Hydrol. , vol.493 , pp. 57-67
    • Nayak, P.C.1    Venkatesh, B.2    Krishna, B.3    Jain, S.K.4
  • 33
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori R., Karbassi A.R., Moghaddamnia A., Han D., Zokaei-Ashtiani M.H., Farokhnia A., Gousheh M.G. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401:177-189.
    • (2011) J. Hydrol. , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Gousheh, M.G.7
  • 34
    • 84904432212 scopus 로고    scopus 로고
    • PUB., Singapore's National Water Agency, Code of Practice on Surface Water Drainage, sixth ed. Singapore.
    • PUB., Singapore's National Water Agency, 2013. Code of Practice on Surface Water Drainage, sixth ed. Singapore.
    • (2013)
  • 35
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 36
    • 70350495365 scopus 로고    scopus 로고
    • Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
    • Sahoo G.B., Schladow S.G., Reuter J.E. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J. Hydrol. 2009, 378(3-4):25-342.
    • (2009) J. Hydrol. , vol.378 , Issue.3-4 , pp. 25-342
    • Sahoo, G.B.1    Schladow, S.G.2    Reuter, J.E.3
  • 37
    • 0141904590 scopus 로고    scopus 로고
    • Simultaneous recurrent neural network trained with non-recurrent backpropagation algorithm for static optimisation
    • Serpen G., Xu Y. Simultaneous recurrent neural network trained with non-recurrent backpropagation algorithm for static optimisation. Neural Comput. Appl. 2003, 12:1-9.
    • (2003) Neural Comput. Appl. , vol.12 , pp. 1-9
    • Serpen, G.1    Xu, Y.2
  • 38
    • 84904176994 scopus 로고    scopus 로고
    • Online multistep-ahead inundation depth forecasts by recurrent NARX networks
    • Shen H.Y., Chang L.C. Online multistep-ahead inundation depth forecasts by recurrent NARX networks. Hydrol. Earth Syst. Sci. 2013, 17(3):935-945.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , Issue.3 , pp. 935-945
    • Shen, H.Y.1    Chang, L.C.2
  • 39
    • 34548170754 scopus 로고    scopus 로고
    • Methodology for long-term prediction of time series
    • Sorjamaa A., Hao J., Reyhani N., Ji Y., Lendasse A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70(16-18):2861-2869.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2861-2869
    • Sorjamaa, A.1    Hao, J.2    Reyhani, N.3    Ji, Y.4    Lendasse, A.5
  • 40
    • 47249103851 scopus 로고    scopus 로고
    • A nonlinear data-driven model for synthetic generation of annual streamflows
    • Sudheer K.P., Srinivasan K., Neelakantan T.R., Srinivas V.V. A nonlinear data-driven model for synthetic generation of annual streamflows. Hydrol. Process. 2008, 22(12):1831-1845.
    • (2008) Hydrol. Process. , vol.22 , Issue.12 , pp. 1831-1845
    • Sudheer, K.P.1    Srinivasan, K.2    Neelakantan, T.R.3    Srinivas, V.V.4
  • 41
    • 84904432213 scopus 로고    scopus 로고
    • Forecast-based operation method in minimizing flood damage in urban area
    • 11th, Edinburgh, Scotland, UK.
    • Tamoto, N., Endo, J., Yoshimoto, K., Yoshida, T., Sakakibara, T., 2008. Forecast-based operation method in minimizing flood damage in urban area. Int. Conf. Urban Drain. 11th, Edinburgh, Scotland, UK.
    • (2008) Int. Conf. Urban Drain.
    • Tamoto, N.1    Endo, J.2    Yoshimoto, K.3    Yoshida, T.4    Sakakibara, T.5
  • 42
    • 72049104241 scopus 로고    scopus 로고
    • Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting
    • Toth E. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 2009, 13:1555-1566.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1555-1566
    • Toth, E.1
  • 43
    • 23044532008 scopus 로고    scopus 로고
    • The construction of smooth models using irregular embeddings determined by a gamma test analysis
    • Tsui A.P.M., Jones A.J., Guedes de Oliveira A.G. The construction of smooth models using irregular embeddings determined by a gamma test analysis. Neural Comput. Appl. 2002, 10(4):318-329.
    • (2002) Neural Comput. Appl. , vol.10 , Issue.4 , pp. 318-329
    • Tsui, A.P.M.1    Jones, A.J.2    Guedes de Oliveira, A.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.