메뉴 건너뛰기




Volumn 47, Issue 3, 2008, Pages 920-925

Prediction of melting points of organic compounds using extreme learning machines

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; MEAN SQUARE ERROR; MOLECULAR STRUCTURE; NEURAL NETWORKS; OPTIMIZATION; ORGANIC COMPOUNDS; REGRESSION ANALYSIS;

EID: 39449107168     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie0704647     Document Type: Article
Times cited : (45)

References (31)
  • 1
    • 24144474980 scopus 로고    scopus 로고
    • Neural Network Modeling of Adsorption Equilibria of Mixtures in Supercritical Fluids
    • Jha, S. K.; Madras, G. Neural Network Modeling of Adsorption Equilibria of Mixtures in Supercritical Fluids. Ind. Eng. Chem. Res. 2005, 44 (17), 7038-7041.
    • (2005) Ind. Eng. Chem. Res , vol.44 , Issue.17 , pp. 7038-7041
    • Jha, S.K.1    Madras, G.2
  • 2
    • 4644303271 scopus 로고    scopus 로고
    • Prediction of Effective Additives to a Ni/Active Carbon Catalyst for Vapor-Phase Carbonylation of Methanol by an Artificial Neural Network
    • Omata, K.; Yamada, M. Prediction of Effective Additives to a Ni/Active Carbon Catalyst for Vapor-Phase Carbonylation of Methanol by an Artificial Neural Network. Ind. Eng. Chem. Res. 2004, 43 (20), 6622-6625.
    • (2004) Ind. Eng. Chem. Res , vol.43 , Issue.20 , pp. 6622-6625
    • Omata, K.1    Yamada, M.2
  • 3
    • 0034020599 scopus 로고    scopus 로고
    • Neural Network Modeling of Structured Packing Height Equivalent to a Theoretical Plate
    • Pollock, G. S.; Eldridge, R. B. Neural Network Modeling of Structured Packing Height Equivalent to a Theoretical Plate. Ind. Eng. Chem. Res. 2000, 39 (5), 1520-1525.
    • (2000) Ind. Eng. Chem. Res , vol.39 , Issue.5 , pp. 1520-1525
    • Pollock, G.S.1    Eldridge, R.B.2
  • 4
    • 0033103196 scopus 로고    scopus 로고
    • A Neural PID Controller for the pH Neutralization Process
    • Yeo, Y. K.; Kwon, T. I. A Neural PID Controller for the pH Neutralization Process. Ind. Eng. Chem. Res. 1999, 38 (3), 978-987.
    • (1999) Ind. Eng. Chem. Res , vol.38 , Issue.3 , pp. 978-987
    • Yeo, Y.K.1    Kwon, T.I.2
  • 6
    • 33745903481 scopus 로고    scopus 로고
    • Extreme Learning Machine: Theory and Applications
    • Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 9
    • 33845748728 scopus 로고    scopus 로고
    • Melting Point Prediction Employing k-Nearest Neighbor Algorithms and Genetic Parameter Optimization
    • Nigsch, F.; Bender, A.; van Buuren, B.; Tissen, J.; Nigsch, E.; Mitchell, J. B. O. Melting Point Prediction Employing k-Nearest Neighbor Algorithms and Genetic Parameter Optimization. J. Chem. Inf. Model. 2006, 46, 2412-2422.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 2412-2422
    • Nigsch, F.1    Bender, A.2    van Buuren, B.3    Tissen, J.4    Nigsch, E.5    Mitchell, J.B.O.6
  • 10
    • 20444362720 scopus 로고    scopus 로고
    • General Melting Point Prediction Based on a Diverse compound Data Set and Artificial Neural Networks
    • Karthikeyan, M.; Glen, R. C.; Bender, A. General Melting Point Prediction Based on a Diverse compound Data Set and Artificial Neural Networks. J. Chem. Inf. Model. 2005, 45, 581-590.
    • (2005) J. Chem. Inf. Model , vol.45 , pp. 581-590
    • Karthikeyan, M.1    Glen, R.C.2    Bender, A.3
  • 11
    • 0025169150 scopus 로고
    • Melting Point, Boiling Point, and Symmetry
    • Abramowitz, R.; Yalkowsky, S. H. Melting Point, Boiling Point, and Symmetry. Pharm. Res. 1990, 7, 942-947.
    • (1990) Pharm. Res , vol.7 , pp. 942-947
    • Abramowitz, R.1    Yalkowsky, S.H.2
  • 12
    • 0142057987 scopus 로고    scopus 로고
    • Quantitative Structure-Property Relationships for Prediction of Boiling Point, Vapor Pressure, and Melting Point
    • Dearden, J. C. Quantitative Structure-Property Relationships for Prediction of Boiling Point, Vapor Pressure, and Melting Point. Environ. Toxicol. Chem. 2003, 22, 1696-1709.
    • (2003) Environ. Toxicol. Chem , vol.22 , pp. 1696-1709
    • Dearden, J.C.1
  • 13
    • 20544477099 scopus 로고    scopus 로고
    • Prediction of Melting Points for Ionic Liquids
    • Trohalaki, S.; Pachter, R. Prediction of Melting Points for Ionic Liquids. QSAR Comb. Sci. 2005, 24, 485-490.
    • (2005) QSAR Comb. Sci , vol.24 , pp. 485-490
    • Trohalaki, S.1    Pachter, R.2
  • 14
    • 13644277240 scopus 로고    scopus 로고
    • Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Liquids
    • Trohalaki, S.; Pachter, R.; Drake, G. W.; Hawkins, T. Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Liquids. Energy Fuels 2005, 19, 279-284.
    • (2005) Energy Fuels , vol.19 , pp. 279-284
    • Trohalaki, S.1    Pachter, R.2    Drake, G.W.3    Hawkins, T.4
  • 15
    • 8344220508 scopus 로고    scopus 로고
    • Estimation of Melting Points of Organic Compounds
    • Jain, A.; Yang, G.; Yalkowsky, S. H. Estimation of Melting Points of Organic Compounds. Ind. Eng. Chem. Res. 2004, 43, 7618-7621.
    • (2004) Ind. Eng. Chem. Res , vol.43 , pp. 7618-7621
    • Jain, A.1    Yang, G.2    Yalkowsky, S.H.3
  • 16
    • 0041698448 scopus 로고    scopus 로고
    • Molecular Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs
    • Bergstrom̈i, C. A. S.; Norinder, U.; Luthman, K.; Artursson, P. Molecular Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs. J. Chem. Inf. Comput. Sci. 2003, 43, 1177-1185.
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , pp. 1177-1185
    • Bergstrom̈i, C.A.S.1    Norinder, U.2    Luthman, K.3    Artursson, P.4
  • 18
    • 0033200852 scopus 로고    scopus 로고
    • A Combined Group Contribution and Molecular Geometry Approach for Predicting Melting Points of Aliphatic Compounds
    • Zhao, L. W.; Yalkowsky, S. H. A Combined Group Contribution and Molecular Geometry Approach for Predicting Melting Points of Aliphatic Compounds. Ind. Eng. Chem. Res. 1999, 38, 3581-3584,
    • (1999) Ind. Eng. Chem. Res , vol.38 , pp. 3581-3584
    • Zhao, L.W.1    Yalkowsky, S.H.2
  • 19
    • 27144504701 scopus 로고    scopus 로고
    • Two New Parameters for Predicting the Entropy of Melting: Eccentricity (epsilon) and Spirality (mu)
    • Johnson, J. L. H.; Yalkowsky, S. H. Two New Parameters for Predicting the Entropy of Melting: Eccentricity (epsilon) and Spirality (mu). Ind. Eng. Chem. Res. 2005, 44, 7559-7566.
    • (2005) Ind. Eng. Chem. Res , vol.44 , pp. 7559-7566
    • Johnson, J.L.H.1    Yalkowsky, S.H.2
  • 20
    • 0032766162 scopus 로고    scopus 로고
    • Predicting the Total Entropy of Melting: Application to Pharmaceuticals and Environmentally Relevant Compounds
    • Dannenfelser, R. M.; Yalkowsky, S. H. Predicting the Total Entropy of Melting: Application to Pharmaceuticals and Environmentally Relevant Compounds. J. Pharm. Sci. 1999, 88, 722-724.
    • (1999) J. Pharm. Sci , vol.88 , pp. 722-724
    • Dannenfelser, R.M.1    Yalkowsky, S.H.2
  • 21
    • 33646231725 scopus 로고    scopus 로고
    • QSPR Correlation of Melting Point for Drug Compounds Based on Different Sources of Molecular Descriptors
    • Modarressi, H.; Dearden, J. C.; Modarress, I. QSPR Correlation of Melting Point for Drug Compounds Based on Different Sources of Molecular Descriptors. J. Chem. Inf. Model. 2006, 46, 930-936.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 930-936
    • Modarressi, H.1    Dearden, J.C.2    Modarress, I.3
  • 22
    • 37249004733 scopus 로고    scopus 로고
    • Ensembling Extreme Learning Machines
    • Advances in Neural Networks, ISNN;, Springer: Berlin
    • Chen, H.; Chen, H.; Nian, X.; Liu, P. Ensembling Extreme Learning Machines. Advances in Neural Networks - ISNN; Lecture Notes in Computer Science 4491; Springer: Berlin, 2007; pp 1069-1076.
    • (2007) Lecture Notes in Computer Science , vol.4491 , pp. 1069-1076
    • Chen, H.1    Chen, H.2    Nian, X.3    Liu, P.4
  • 23
    • 39449115260 scopus 로고    scopus 로고
    • accessed March 20, 2006
    • http://www.cheminformatics.org/ (accessed March 20, 2006).
  • 24
    • 39449093527 scopus 로고    scopus 로고
    • Molecular Diversity Preservation International MDPI, accessed March 20, 2006
    • Molecular Diversity Preservation International (MDPI). http://www.mdpi.org/ (accessed March 20, 2006).
  • 25
    • 3042549719 scopus 로고    scopus 로고
    • MOE Molecular Operating Environment, Montreal, Quebec, Canada
    • MOE (Molecular Operating Environment); Chemical Computing Group, Inc.: Montreal, Quebec, Canada.
    • Chemical Computing Group, Inc
  • 26
    • 39449087747 scopus 로고    scopus 로고
    • accessed March 20, 2006
    • www.ntu.edu.sg/home/ebhuang (accessed March 20, 2006).
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 30
    • 34247196059 scopus 로고    scopus 로고
    • Virtual Screening of Chinese Herbs with Random Forest
    • Ehrman, T. M.; Barlow, D. J.; Hylands, P. J. Virtual Screening of Chinese Herbs with Random Forest. J. Chem. Inf. Model. 2007, 47 (2), 264-278.
    • (2007) J. Chem. Inf. Model , vol.47 , Issue.2 , pp. 264-278
    • Ehrman, T.M.1    Barlow, D.J.2    Hylands, P.J.3
  • 31
    • 33846857994 scopus 로고    scopus 로고
    • Random Forest Prediction of Mutagenicity from Empirical Physicochemical Descriptors
    • Zhang, Q. Y.; Aires-de-Sousa, J. Random Forest Prediction of Mutagenicity from Empirical Physicochemical Descriptors. J. Chem. Inf. Model. 2007, 47 (1), 1-8.
    • (2007) J. Chem. Inf. Model , vol.47 , Issue.1 , pp. 1-8
    • Zhang, Q.Y.1    Aires-de-Sousa, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.