메뉴 건너뛰기




Volumn 509, Issue , 2014, Pages 379-386

A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

Author keywords

Adaptive neuro fuzzy inference system; Artificial neural network; River flow forecasting; Support vector machine

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; COEFFICIENT OF CORRELATION; COMPLICATED TOPOGRAPHIES; EFFICIENCY COEFFICIENT; QUANTITATIVE STANDARDS; RIVER FLOW FORECASTING; ROOT MEAN SQUARED ERRORS; STATISTICAL PERFORMANCE;

EID: 84890351420     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.11.054     Document Type: Article
Times cited : (309)

References (40)
  • 1
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil M., Kita I., Yano A., et al. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 2007, 337:22-34.
    • (2007) J. Hydrol. , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3
  • 3
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau K.W., Wu C.L., Li Y.S. Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng. 2005, 10:485-491.
    • (2005) J. Hydrol. Eng. , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 4
    • 35748941976 scopus 로고    scopus 로고
    • Pruning of support vector networks on flood forecasting
    • Chen S.T., Yu P.S. Pruning of support vector networks on flood forecasting. J. Hydrol. 2007, 347:67-78.
    • (2007) J. Hydrol. , vol.347 , pp. 67-78
    • Chen, S.T.1    Yu, P.S.2
  • 5
    • 77950866077 scopus 로고    scopus 로고
    • Statistical downscaling of daily precipitation using support vector machines and multivariate analysis
    • Chen S.T., Yu P.S., Tang Y.H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385:13-22.
    • (2010) J. Hydrol. , vol.385 , pp. 13-22
    • Chen, S.T.1    Yu, P.S.2    Tang, Y.H.3
  • 7
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos I.N., Coulibaly P., Tsanis I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309:229-240.
    • (2005) J. Hydrol. , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 8
    • 1842767238 scopus 로고    scopus 로고
    • Optimization of artificial neural network (ANN) model design for prediction of macro invertebrates in the Awalm river basin (Flanders Belgium)
    • Dedecker A.P., Goethals P.L.M., Gabriels W., et al. Optimization of artificial neural network (ANN) model design for prediction of macro invertebrates in the Awalm river basin (Flanders Belgium). Ecol. Model. 2004, 174:161-173.
    • (2004) Ecol. Model. , vol.174 , pp. 161-173
    • Dedecker, A.P.1    Goethals, P.L.M.2    Gabriels, W.3
  • 9
    • 0012039172 scopus 로고    scopus 로고
    • Communications phase synchronization using the adaptive network fuzzy inference system
    • Ph.D. Thesis. New Mexico State University, Las Cruces, New Mexico, USA.
    • Drake, J.T., 2000. Communications phase synchronization using the adaptive network fuzzy inference system. Ph.D. Thesis. New Mexico State University, Las Cruces, New Mexico, USA.
    • (2000)
    • Drake, J.T.1
  • 10
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A., Taha M.R., Noureldin A. A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour. Manage. 2006, 21:533-556.
    • (2006) Water Resour. Manage. , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 11
    • 78149414476 scopus 로고    scopus 로고
    • Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks
    • Ghose D.K., Panda S.S., Swain P.C. Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. J. Hydrol. 2010, 394:296-304.
    • (2010) J. Hydrol. , vol.394 , pp. 296-304
    • Ghose, D.K.1    Panda, S.S.2    Swain, P.C.3
  • 14
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst, Man, Cybernet 1993, 23:665-685.
    • (1993) IEEE Trans Syst, Man, Cybernet , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 16
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kişi Ö. Daily pan evaporation modelling using a neuro-fuzzy computing technique. J. Hydrol. 2006, 329:636-646.
    • (2006) J. Hydrol. , vol.329 , pp. 636-646
    • Kişi, Ö.1
  • 17
    • 0344066275 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
    • Kuo Y.M., Liu C.W., Lin K.H. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res. 2004, 38:148-158.
    • (2004) Water Res. , vol.38 , pp. 148-158
    • Kuo, Y.M.1    Liu, C.W.2    Lin, K.H.3
  • 18
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J.Y., Cheng C.T., Chau K.W. Using support vector machines for long-term discharge prediction. Hydrolog. Sci. J. 2006, 51:599-612.
    • (2006) Hydrolog. Sci. J. , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 19
    • 65649123113 scopus 로고    scopus 로고
    • Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods
    • Lin G.F., Chen G.R., Huang P.Y., et al. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. J. Hydrol. 2009, 372:17-29.
    • (2009) J. Hydrol. , vol.372 , pp. 17-29
    • Lin, G.F.1    Chen, G.R.2    Huang, P.Y.3
  • 20
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 2000, 227:56-65.
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 21
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H., Hsu K.-L., Gupta H.V., et al. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 2004, 295:246-262.
    • (2004) J. Hydrol. , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.V.3
  • 22
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291:52-66.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 23
    • 19044383810 scopus 로고    scopus 로고
    • Short-term flood forecasting with a neurofuzzy model
    • Nayak P.C., Sudheer K.P., Rangan D.M., et al. Short-term flood forecasting with a neurofuzzy model. Water Resour. Res. 2005, 41:2517-2530.
    • (2005) Water Resour. Res. , vol.41 , pp. 2517-2530
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3
  • 24
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage. 2009, 23:2877-2894.
    • (2009) Water Resour. Manage. , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 25
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimaloptimization
    • MIT Press, Cambridge, Massachusetts, USA, B. Schokopf, C.J.C. Burges, A.J. Smolar (Eds.)
    • Platt J.C. Fast training of support vector machines using sequential minimaloptimization. Advances in Kernel Methods-Support Vector Learning 1999, MIT Press, Cambridge, Massachusetts, USA. B. Schokopf, C.J.C. Burges, A.J. Smolar (Eds.).
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Platt, J.C.1
  • 26
    • 13744256757 scopus 로고    scopus 로고
    • Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks
    • Sahoo G.B., Ray C., Wade H.F. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks. Ecol. Model. 2005, 183:29-46.
    • (2005) Ecol. Model. , vol.183 , pp. 29-46
    • Sahoo, G.B.1    Ray, C.2    Wade, H.F.3
  • 27
    • 0030201218 scopus 로고    scopus 로고
    • Effect of data standardization on neural network training
    • Shanker M., Hu M.Y., Hung M.S. Effect of data standardization on neural network training. Int. J. Mange. Sci. 1996, 24:385-397.
    • (1996) Int. J. Mange. Sci. , vol.24 , pp. 385-397
    • Shanker, M.1    Hu, M.Y.2    Hung, M.S.3
  • 29
    • 37548999007 scopus 로고    scopus 로고
    • Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system
    • Shu C., Ouarda T.B.M.J. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol. 2008, 349:31-43.
    • (2008) J. Hydrol. , vol.349 , pp. 31-43
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 30
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-a case study
    • Singh K.P., Basant A., Malik A., et al. Artificial neural network modeling of the river water quality-a case study. Ecol. Model. 2009, 220:888-895.
    • (2009) Ecol. Model. , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3
  • 31
    • 77956263390 scopus 로고    scopus 로고
    • Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling
    • Talei A., Chua L.H.C., Wong T.S.W. Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. J. Hydrol. 2010, 391:248-262.
    • (2010) J. Hydrol. , vol.391 , pp. 248-262
    • Talei, A.1    Chua, L.H.C.2    Wong, T.S.W.3
  • 32
    • 84868367414 scopus 로고    scopus 로고
    • Artificial Neural Network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
    • Taormina R., Chau K.W., Sethi R. Artificial Neural Network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intel. 2012, 25:1670-1676.
    • (2012) Eng. Appl. Artif. Intel. , vol.25 , pp. 1670-1676
    • Taormina, R.1    Chau, K.W.2    Sethi, R.3
  • 34
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W.C., Chau K.W., Cheng C.T., et al. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374:294-306.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3
  • 35
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu C.L., Chau K.W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399:394-409.
    • (2011) J. Hydrol. , vol.399 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 36
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu C.L., Chau K.W., Li Y.S. River stage prediction based on a distributed support vector regression. J. Hydrol. 2008, 358:96-111.
    • (2008) J. Hydrol. , vol.358 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 37
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu C.L., Chau K.W., Li Y.S. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 45:W08432.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 38
    • 78649912654 scopus 로고    scopus 로고
    • Adaptive neuro fuzzy inference system for classification of water quality status
    • Yan H., Zou Z., Wang H. Adaptive neuro fuzzy inference system for classification of water quality status. J. Environ. Sci. 2010, 22:1891-1896.
    • (2010) J. Environ. Sci. , vol.22 , pp. 1891-1896
    • Yan, H.1    Zou, Z.2    Wang, H.3
  • 39
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon H., Jun S.C., Hyun Y., et al. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396:128-138.
    • (2011) J. Hydrol. , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3
  • 40
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P.S., Chen S.T., Chang I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328:704-716.
    • (2006) J. Hydrol. , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.