메뉴 건너뛰기




Volumn 13, Issue 1, 2011, Pages 49-63

Daily river flow forecasting using wavelet ANN hybrid models

Author keywords

Artificial neural networks; Discrete wavelet transformation; Flow forecasting

Indexed keywords


EID: 78651297519     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2010.040     Document Type: Article
Times cited : (58)

References (70)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term stream flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, J. F. 2008 Development of a short-term stream flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 353, 247-266.
    • (2008) J. Hydrol. , vol.353 , pp. 247-266
    • Adamowski, J.F.1
  • 2
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil, F. & Tape, D. G. 2004 An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. 3, 21-128.
    • (2004) J. Environ. Eng. Sci. , vol.3 , pp. 21-128
    • Anctil, F.1    Tape, D.G.2
  • 3
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil, M., Kita, I., Yano, A. & Nishiyama, S. 2007 A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 337, 22-34.
    • (2007) J. Hydrol. , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee 2000a-Artificial neural networks in hydrology I: preliminary concepts. J. Hydrol. Eng. 5(2), 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: Hydrologic application
    • ASCE Task Committee
    • ASCE Task Committee 2000b Artificial neural networks in hydrology II: hydrologic application. J. Hydrol. Eng. 5(2), 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem, A., Campbell, J. & Murtagh, F. 1998 Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Finance 6, 5-12.
    • (1998) J. Comput. Intell. Finance , vol.6 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 7
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modeling
    • Bray, M. & Han, D. 2004 Identification of support vector machines for runoff modeling. J. Hydroinformatics 6(4), 265-280.
    • (2004) J. Hydroinformatics , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 8
    • 78651288786 scopus 로고    scopus 로고
    • Stream flow forecasting using neural networks and wavelet analysis
    • Cannas, B., Fanni, A., Sias, G., Tronci, S. & Zedda, M. K. 2005 Stream flow forecasting using neural networks and wavelet analysis. Eur. Geosci. Union 7, 45-51.
    • (2005) Eur. Geosci. Union , vol.7 , pp. 45-51
    • Cannas, B.1    Fanni, A.2    Sias, G.3    Tronci, S.4    Zedda, M.K.5
  • 9
    • 33751401308 scopus 로고    scopus 로고
    • Data pre-processing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    • Cannas, B., Fanni, A., See, L. & Sias, G. 2006 Data pre-processing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth 31(18), 1164-1171.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 10
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau, K. W. 2006 Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 329 (3-4), 363-367.
    • (2006) J. Hydrol. , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 11
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze river
    • Chau, K. W., Wu, C. L. & Li, Y. S. 2005 Comparison of several flood forecasting models in Yangtze river. J. Hydrol. Eng. 10, 485-491.
    • (2005) J. Hydrol. Eng. , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 12
    • 16544365469 scopus 로고    scopus 로고
    • Application of wavelet-based multi-model Kalman filters to real-time flood forecasting
    • Chou, C.-M. & Wang, R.-Y. 2004 Application of wavelet-based multi-model Kalman filters to real-time flood forecasting. Hydrol. Process. 18, 987-1008.
    • (2004) Hydrol. Process , vol.18 , pp. 987-1008
    • Chou, C.-M.1    Wang, R.-Y.2
  • 13
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., Anctil, F. & Bobee, B. 2000 Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 230, 244-257.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 14
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river forecasting
    • Dawson, C. W. & Wilby, R. L. 1999 A comparison of artificial neural networks used for river forecasting. Hydrol. Earth Sys. Sci. 3(4), 529-540.
    • (1999) Hydrol. Earth Sys. Sci. , vol.3 , Issue.4 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 15
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. 2001 Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 25, 80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 17
    • 68949148992 scopus 로고    scopus 로고
    • Recent advances in data-driven modeling of remote sensing applications in hydrology
    • Evora, N. D. & Coulibaly, P. 2009 Recent advances in data-driven modeling of remote sensing applications in hydrology. J. Hydroinformatics 11 (3-4), 194-201.
    • (2009) J. Hydroinformatics , vol.11 , Issue.3-4 , pp. 194-201
    • Evora, N.D.1    Coulibaly, P.2
  • 18
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchments with artificial neural networks
    • Gautam, M. R., Watanabe, K. & Saegusa, H. 2000 Runoff analysis in humid forest catchments with artificial neural networks. J. Hydrol. 235, 117-136.
    • (2000) J. Hydrol. , vol.235 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 19
    • 33744823701 scopus 로고    scopus 로고
    • A novel genetic programming strategy: Evolutionary polynomial regression
    • ed. S. Y. Liong, X. Phoon & V. Babovic, World Scientific Publishing Company, Singapore
    • Giustolisi, O. & Savic, D. A. 2004 A novel genetic programming strategy: evolutionary polynomial regression. In Proceedings of Hydroinformatics 2004 (ed. S. Y. Liong, X. Phoon & V. Babovic), Vol. 1, pp. 787-794. World Scientific Publishing Company, Singapore.
    • (2004) Proceedings of Hydroinformatics 2004 , vol.1 , pp. 787-794
    • Giustolisi, O.1    Savic, D.A.2
  • 20
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • Giustolisi, O. & Savic, D. A. 2006 A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinformatics 8(3), 207-222.
    • (2006) J. Hydroinformatics , vol.8 , Issue.3 , pp. 207-222
    • Giustolisi, O.1    Savic, D.A.2
  • 21
    • 68949086436 scopus 로고    scopus 로고
    • Advances in data-driven analyses and modeling using EPR-MOGA
    • Giustolisi, O. & Savic, D. A. 2009 Advances in data-driven analyses and modeling using EPR-MOGA. J. Hydroinformatics 11 (3-4), 225-236.
    • (2009) J. Hydroinformatics , vol.11 , Issue.3-4 , pp. 225-236
    • Giustolisi, O.1    Savic, D.A.2
  • 23
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han, D., Kwong, T. & Li, S. 2006 Uncertainties in real-time flood forecasting with neural networks. Hydrol. Process. 21(2), 223-228.
    • (2006) Hydrol. Process , vol.21 , Issue.2 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 24
    • 35348956876 scopus 로고    scopus 로고
    • Flood forecasting using support vector machines
    • Han, D., Chan, L. & Zhu, N. 2007 Flood forecasting using support vector machines. J. Hydroinformatics 9(4), 267-276.
    • (2007) J. Hydroinformatics , vol.9 , Issue.4 , pp. 267-276
    • Han, D.1    Chan, L.2    Zhu, N.3
  • 26
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K. L., Gupta, H. V. & Sorooshian, S. 1995 Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 27
    • 68949105694 scopus 로고    scopus 로고
    • Review of the application of fuzzy inference systems in river flow forecasting
    • Jacquin, A. P. & Shamseldin, A. Y. 2009 Review of the application of fuzzy inference systems in river flow forecasting. J. Hydroinformatics 11 (3-4), 202-210.
    • (2009) J. Hydroinformatics , vol.11 , Issue.3-4 , pp. 202-210
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 30
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim, T. W. & Valdes, J. B. 2003 Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 8(6), 319-328.
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 31
    • 33847245911 scopus 로고    scopus 로고
    • Nonlinear predictive control for a NNARX hydro plant model
    • Kishor, N. & Singh, S. P. 2007 Nonlinear predictive control for a NNARX hydro plant model. Neural Comput. Appl. 16(2), 101-108.
    • (2007) Neural. Comput. Appl. , vol.16 , Issue.2 , pp. 101-108
    • Kishor, N.1    Singh, S.P.2
  • 32
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi, O. 2004 River flow modeling using artificial neural networks. J. Hydrol. Eng. 9(1), 60-63.
    • (2004) J. Hydrol. Eng. , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 33
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi, O. 2007 Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 12(5), 532-539.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 34
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kisi, O. 2008a River flow forecasting and estimation using different artificial neural network techniques. Hydrol. Res. 39(1), 27-40.
    • (2008) Hydrol. Res. , vol.39 , Issue.1 , pp. 27-40
    • Kisi, O.1
  • 35
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi, O. 2008b Stream flow forecasting using neuro-wavelet technique. Hydrol. Process. 22(20), 4142-4152.
    • (2008) Hydrol. Process , vol.22 , Issue.20 , pp. 4142-4152
    • Kisi, O.1
  • 36
    • 67650333111 scopus 로고    scopus 로고
    • Neural network and wavelet conjunction model for modeling monthly level fluctuations of Van Lake in Turkey
    • Kisi, O. 2009a Neural network and wavelet conjunction model for modeling monthly level fluctuations of Van Lake in Turkey. Hydrol. Process. 23(14), 2081-2092.
    • (2009) Hydrol. Process , vol.23 , Issue.14 , pp. 2081-2092
    • Kisi, O.1
  • 37
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kisi, O. 2009b Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J. Hydrol. Eng. 14(8), 773-782.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 38
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi, O. & Cigizoglu, H. K. 2007 Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Syst. 24(3), 211-231.
    • (2007) Civ. Eng. Environ. Syst. , vol.24 , Issue.3 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.K.2
  • 40
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks: Comparison of network types
    • Kumar, A. R. S., Sudheer, K. P., Jain, S. K. & Agarwal, P. K. 2005 Rainfall-runoff modeling using artificial neural networks: comparison of network types. Hydrol. Process. 19, 1277-1291.
    • (2005) Hydrol. Process , vol.19 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 41
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1. A review of concepts
    • Labat, D. 2005 Recent advances in wavelet analyses: part 1. A review of concepts. J. Hydrol. 314 (1-4), 275-288.
    • (2005) J. Hydrol. , vol.314 , Issue.1-4 , pp. 275-288
    • Labat, D.1
  • 42
    • 0033620074 scopus 로고    scopus 로고
    • Wavelet analysis in Karstic hydrology 2nd part: Rainfall-runoff cross-wavelet analysis
    • Labat, D., Ababou, R. & Mangin, A. 1999 Wavelet analysis in Karstic hydrology 2nd part: rainfall-runoff cross-wavelet analysis. C. R. Acad. Sci. IIA Earth Planet. Sci. 329, 881-887.
    • (1999) C. R. Acad. Sci. IIA Earth Planet. Sci. , vol.329 , pp. 881-887
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 43
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relationships for karstic springs. part II: Continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat, D., Ababou, R. & Mangin, A. 2000 Rainfall-runoff relationships for karstic springs. part II: continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 238, 149-178.
    • (2000) J. Hydrol. , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 44
    • 78651293296 scopus 로고    scopus 로고
    • Wavelet characteristics of hydrologic time series in upstream of the Longchuan stream
    • Liong, C. & Shizhong, J. 2006 Wavelet characteristics of hydrologic time series in upstream of the Longchuan stream. J. Am. Sci. 2(2), 82-87.
    • (2006) J. Am. Sci. , vol.2 , Issue.2 , pp. 82-87
    • Liong, C.1    Shizhong, J.2
  • 45
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 15, 101-124.
    • (2000) Environ. Model. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 47
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, Neuro-fuzzy, and Neuro-GA Models
    • Mukerji, A., Chatterjee, C. & Raghuwanshi, N. S. 2009 Flood forecasting using ANN, Neuro-Fuzzy, and Neuro-GA Models. J. Hydrol. Eng. 14(6), 647-652.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.6 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 48
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real time flood forecasting
    • Nayak, P. C., Sudheer, K. P. & Ramasastri, K. S. 2005 Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrol. Process. 19, 955-958.
    • (2005) Hydrol. Process , vol.19 , pp. 955-958
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 49
    • 36649032078 scopus 로고    scopus 로고
    • Rainfall-runoff modeling through hybrid intelligent system
    • Nayak, P. C., Sudheer, K. P. & Jain, S. K. 2007 Rainfall-runoff modeling through hybrid intelligent system. Water Resour. Res. 43, 1-17.
    • (2007) Water Resour. Res. , vol.43 , pp. 1-17
    • Nayak, P.C.1    Sudheer, K.P.2    Jain, S.K.3
  • 50
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani, V., Alami, M. T. & Aminfar, M. H. 2008 A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 22(3), 466-472.
    • (2008) Eng. Appl. Artif. Intell , vol.22 , Issue.3 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 51
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and Neuro-fuzzy conjunction model for precipitation forecasting
    • Partal, T. & Kisi, O. 2007 Wavelet and Neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 342 (1-2), 199-212.
    • (2007) J. Hydrol. , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 52
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for stream flow prediction
    • Pramanik, N. & Panda, R. K. 2009 Application of neural network and adaptive neuro-fuzzy inference systems for stream flow prediction. Hydrol. Sci. J. 54(2), 247-260.
    • (2009) Hydrol. Sci. J , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 55
    • 65749094852 scopus 로고    scopus 로고
    • Runoff prediction using an integrated hybrid modelling scheme
    • Remesan, R., Shamim, M. A., Han, D. & Mathew, J. 2009 Runoff prediction using an integrated hybrid modelling scheme. J. Hydrol. 372 (1-4), 48-60.
    • (2009) J. Hydrol. , vol.372 , Issue.1-4 , pp. 48-60
    • Remesan, R.1    Shamim, M.A.2    Han, D.3    Mathew, J.4
  • 56
    • 0034036602 scopus 로고    scopus 로고
    • Coherent modes in multiscale variability of streamflow over the united states
    • Saco, P. & Kumar, P. 2000 Coherent modes in multiscale variability of streamflow over the united states. Water Resour. Res. 36, 1049-1068.
    • (2000) Water Resour. Res. , vol.36 , pp. 1049-1068
    • Saco, P.1    Kumar, P.2
  • 57
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • Sahoo, G. B. & Ray, C. 2006 Flow forecasting for a Hawaii stream using rating curves and neural networks. J. Hydrol. 317, 63-80.
    • (2006) J. Hydrol. , vol.317 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 58
    • 0030201218 scopus 로고    scopus 로고
    • Effect of data normalization on neural network training
    • Shanker, M., Hu, M. Y. & Hung, M. S. 1996 Effect of data normalization on neural network training. Int. J. Manage. Sci. 24, 385-397.
    • (1996) Int. J. Manage. Sci. , vol.24 , pp. 385-397
    • Shanker, M.1    Hu, M.Y.2    Hung, M.S.3
  • 59
    • 27644448548 scopus 로고    scopus 로고
    • Simulation of flood flow in a stream system using artificial neural networks
    • Shrestha, R. R., Theobald, S. & Nestmann, F. 2005 Simulation of flood flow in a stream system using artificial neural networks. Hydrol. Earth Syst. Sci. 9(4), 313-321.
    • (2005) Hydrol. Earth Syst. Sci. , vol.9 , Issue.4 , pp. 313-321
    • Shrestha, R.R.1    Theobald, S.2    Nestmann, F.3
  • 60
    • 78751663789 scopus 로고    scopus 로고
    • Appropriate data normalization range for daily river flow forecasting using an artificial neural network
    • ed. I. D. Cluckie, Y. Chen, V. Babovic, L. Konikow, A. Mynett, S. Demuth & D. Savic, IAHS Publication, UK
    • Singh, A., Panda, R. K. & Pramanik, N. 2009 Appropriate data normalization range for daily river flow forecasting using an artificial neural network. In Hydroinformatics in Hydrology, Hydrogeology and Water Resources 2009 (ed. I. D. Cluckie, Y. Chen, V. Babovic, L. Konikow, A. Mynett, S. Demuth & D. Savic), Vol. 331, pp. 51-57. IAHS Publication, UK.
    • (2009) Hydroinformatics in Hydrology, Hydrogeology and Water Resources 2009 , vol.331 , pp. 51-57
    • Singh, A.1    Panda, R.K.2    Pramanik, N.3
  • 61
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith, L. C., Turcotte, D. L. & Isacks, B. L. 1998 Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol. Process. 12, 233-249.
    • (1998) Hydrol. Process , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.L.2    Isacks, B.L.3
  • 62
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. 2002 A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 16, 1325-1330.
    • (2002) Hydrol. Process , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 63
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S. & Johnson, P. A. 1999 Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4(3), 232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 64
    • 1542680533 scopus 로고    scopus 로고
    • A practical guide to wavelet analysis
    • Torrence, C. & Compo, G. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61-78.
    • (1998) Bull. Am. Meteorol. Soc. , vol.79 , Issue.1 , pp. 61-78
    • Torrence, C.1    Compo, G.2
  • 65
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, D. & Ding, J. 2003 Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 1, 67-71.
    • (2003) Nat. Sci. , vol.1 , pp. 67-71
    • Wang, D.1    Ding, J.2
  • 66
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. 2003 Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 67
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. 1999 Short term streamflow forecasting using artificial neural networks. J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 68
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural-wavelet model for short term load forecasting
    • Zhang, B. L. & Dong, Z. Y. 2001 An adaptive neural-wavelet model for short term load forecasting. Electric Power Syst. Res. 59(2), 121-129.
    • (2001) Electric Power Syst. Res. , vol.59 , Issue.2 , pp. 121-129
    • Zhang, B.L.1    Dong, Z.Y.2
  • 69
    • 0033896533 scopus 로고    scopus 로고
    • A hybrid wavelet-kalman filter method for load forecasting
    • Zheng, T., Girgis, A. A. & Makram, E. B. 2000 A hybrid wavelet-Kalman filter method for load forecasting. Electric Power Syst. Res. 54, 11-17.
    • (2000) Electric Power Syst. Res. , vol.54 , pp. 11-17
    • Zheng, T.1    Girgis, A.A.2    Makram, E.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.