-
1
-
-
72449139311
-
Neural network hydroinformatics: maintaining scientific rigour
-
Springer, Berlin, Heidelberg, R. Abrahart, L. See, D. Solomatine (Eds.) Practical Hydroinformatics
-
Abrahart R., See L., Dawson C. Neural network hydroinformatics: maintaining scientific rigour. Water Science and Technology Library 2008, vol. 68:33-47. Springer, Berlin, Heidelberg. R. Abrahart, L. See, D. Solomatine (Eds.).
-
(2008)
Water Science and Technology Library
, vol.68
, pp. 33-47
-
-
Abrahart, R.1
See, L.2
Dawson, C.3
-
2
-
-
84863764389
-
Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
-
Abrahart R.J., Anctil F., Coulibaly P., Dawson C.W., Mount N.J., See L.M., Shamseldin A.Y., Solomatine D.P., Toth E., Wilby R.L. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog. Phys. Geogr. 2012, 36:480-513.
-
(2012)
Prog. Phys. Geogr.
, vol.36
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, A.Y.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
3
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
72149110312
-
Early flood warnings from empirical (expanded) downscaling of the full ECMWF Ensemble Prediction System
-
W10443
-
Bürger G., Reusser D., Kneis D. Early flood warnings from empirical (expanded) downscaling of the full ECMWF Ensemble Prediction System. Water Resour. Res. 2009, 45. W10443. 10.1029/2009WR007779.
-
(2009)
Water Resour. Res.
, vol.45
-
-
Bürger, G.1
Reusser, D.2
Kneis, D.3
-
5
-
-
84871651156
-
Reservoir computing and extreme learning machines for non-linear time-series data analysis
-
Butcher J., Verstraeten D., Schrauwen B., Day C., Haycock P. Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Networks 2013, 38:76-89.
-
(2013)
Neural Networks
, vol.38
, pp. 76-89
-
-
Butcher, J.1
Verstraeten, D.2
Schrauwen, B.3
Day, C.4
Haycock, P.5
-
6
-
-
34249913452
-
Predictive uncertainty in environmental modelling
-
Cawley G.C., Janacek G.J., Haylock M.R., Dorling S.R. Predictive uncertainty in environmental modelling. Neural Networks 2007, 20:537-549.
-
(2007)
Neural Networks
, vol.20
, pp. 537-549
-
-
Cawley, G.C.1
Janacek, G.J.2
Haylock, M.R.3
Dorling, S.R.4
-
7
-
-
84904421004
-
Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
-
Chang F.J., Chen P.A., Lu Y.R., Huang E., Chang K.Y. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J. Hydrol. 2014, 517:836-846.
-
(2014)
J. Hydrol.
, vol.517
, pp. 836-846
-
-
Chang, F.J.1
Chen, P.A.2
Lu, Y.R.3
Huang, E.4
Chang, K.Y.5
-
8
-
-
33645990587
-
Computational intelligence in earth sciences and environmental applications: issues and challenges
-
Cherkassky V., Krasnopolsky V., Solomatine D., Valdes J. Computational intelligence in earth sciences and environmental applications: issues and challenges. Neural Networks 2006, 19:113-121.
-
(2006)
Neural Networks
, vol.19
, pp. 113-121
-
-
Cherkassky, V.1
Krasnopolsky, V.2
Solomatine, D.3
Valdes, J.4
-
9
-
-
84962832968
-
Neural network solutions to flood estimation at ungauged sites
-
Springer, Berlin, Heidelberg, R. Abrahart, L. See, D. Solomatine (Eds.) Practical Hydroinformatics
-
Dawson C. Neural network solutions to flood estimation at ungauged sites. Water Science and Technology Library 2008, vol. 68:49-57. Springer, Berlin, Heidelberg. R. Abrahart, L. See, D. Solomatine (Eds.).
-
(2008)
Water Science and Technology Library
, vol.68
, pp. 49-57
-
-
Dawson, C.1
-
10
-
-
68949200808
-
Error minimized extreme learning machine with growth of hidden nodes and incremental learning
-
Feng G., Huang G.B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 2009, 20:1352-1357.
-
(2009)
IEEE Trans. Neural Networks
, vol.20
, pp. 1352-1357
-
-
Feng, G.1
Huang, G.B.2
Lin, Q.3
Gay, R.4
-
11
-
-
84926443585
-
Development and operational testing of a super-ensemble artificial intelligence flood-forecast model for a Pacific Northwest river
-
Fleming S.W., Bourdin D.R., Campbell D., Stull R.B., Gardner T. Development and operational testing of a super-ensemble artificial intelligence flood-forecast model for a Pacific Northwest river. J. Am. Water Resour. Assoc. 2015, 51:502-512.
-
(2015)
J. Am. Water Resour. Assoc.
, vol.51
, pp. 502-512
-
-
Fleming, S.W.1
Bourdin, D.R.2
Campbell, D.3
Stull, R.B.4
Gardner, T.5
-
12
-
-
77953868716
-
Spatiotemporal mapping of ENSO and PDO surface meteorological signals in British Columbia, Yukon, and southeast Alaska
-
Fleming S.W., Whitfield P.H. Spatiotemporal mapping of ENSO and PDO surface meteorological signals in British Columbia, Yukon, and southeast Alaska. Atmos.-Ocean 2010, 48:122-131.
-
(2010)
Atmos.-Ocean
, vol.48
, pp. 122-131
-
-
Fleming, S.W.1
Whitfield, P.H.2
-
13
-
-
37248999362
-
Regime-dependent streamflow sensitivities to Pacific climate modes cross the Georgia-Puget transboundary ecoregion
-
Fleming S.W., Whitfield P.H., Moore R.D., Quilty E.J. Regime-dependent streamflow sensitivities to Pacific climate modes cross the Georgia-Puget transboundary ecoregion. Hydrol. Process. 2007, 21:3264-3287.
-
(2007)
Hydrol. Process.
, vol.21
, pp. 3264-3287
-
-
Fleming, S.W.1
Whitfield, P.H.2
Moore, R.D.3
Quilty, E.J.4
-
15
-
-
84887565416
-
NOAA's second-generation global medium-range ensemble reforecast dataset
-
Hamill T.M., Bates G.T., Whitaker J.S., Murray D.R., Fiorino M., Galarneau T.J., Zhu Y., Lapenta W. NOAA's second-generation global medium-range ensemble reforecast dataset. Bull. Am. Meteorol. Soc. 2013, 94:1553-1565.
-
(2013)
Bull. Am. Meteorol. Soc.
, vol.94
, pp. 1553-1565
-
-
Hamill, T.M.1
Bates, G.T.2
Whitaker, J.S.3
Murray, D.R.4
Fiorino, M.5
Galarneau, T.J.6
Zhu, Y.7
Lapenta, W.8
-
16
-
-
0017280570
-
The analysis and selection of variables in linear regression
-
Hocking R.R. The analysis and selection of variables in linear regression. Biometrics 1976, 32:1-49.
-
(1976)
Biometrics
, vol.32
, pp. 1-49
-
-
Hocking, R.R.1
-
17
-
-
84867099470
-
Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling
-
Hong Y.S.T. Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling. J. Hydrol. 2012, 468-469:11-21.
-
(2012)
J. Hydrol.
, pp. 11-21
-
-
Hong, Y.S.T.1
-
19
-
-
84908682236
-
Trends in extreme learning machines: a review
-
Huang G., Huang G.B., Song S., You K. Trends in extreme learning machines: a review. Neural Networks 2015, 61:32-48.
-
(2015)
Neural Networks
, vol.61
, pp. 32-48
-
-
Huang, G.1
Huang, G.B.2
Song, S.3
You, K.4
-
20
-
-
84906948723
-
An insight into extreme learning machines: random neurons, random features and kernels
-
Huang G.B. An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Comput. 2014, 6:376-390.
-
(2014)
Cognitive Comput.
, vol.6
, pp. 376-390
-
-
Huang, G.B.1
-
22
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
23
-
-
2542447559
-
River flow forecasting using recurrent neural networks
-
Kumar D.N., Raju K.S., Sathish T. River flow forecasting using recurrent neural networks. Water Resour. Manage. 2004, 18:143-161.
-
(2004)
Water Resour. Manage.
, vol.18
, pp. 143-161
-
-
Kumar, D.N.1
Raju, K.S.2
Sathish, T.3
-
24
-
-
77958158373
-
Feature selection with the Boruta package
-
Kursa M.B., Rudnicki W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36:1-13.
-
(2010)
J. Stat. Softw.
, vol.36
, pp. 1-13
-
-
Kursa, M.B.1
Rudnicki, W.R.2
-
25
-
-
77954299719
-
Ensemble of online sequential extreme learning machine
-
Lan Y., Soh Y.C., Huang G.B. Ensemble of online sequential extreme learning machine. Neurocomputing 2009, 72:3391-3395.
-
(2009)
Neurocomputing
, vol.72
, pp. 3391-3395
-
-
Lan, Y.1
Soh, Y.C.2
Huang, G.B.3
-
26
-
-
34047174077
-
A fast and accurate online sequential learning algorithm for feedforward networks
-
Liang N.Y., Huang G.B., Saratchandran P., Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Networks 2006, 17:1411-1423.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, pp. 1411-1423
-
-
Liang, N.Y.1
Huang, G.B.2
Saratchandran, P.3
Sundararajan, N.4
-
27
-
-
84940039142
-
Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation
-
Lima A.R., Cannon A.J., Hsieh W.W. Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation. Environ. Modell. Softw. 2015, 73:175-188.
-
(2015)
Environ. Modell. Softw.
, vol.73
, pp. 175-188
-
-
Lima, A.R.1
Cannon, A.J.2
Hsieh, W.W.3
-
28
-
-
68649088777
-
Reservoir computing approaches to recurrent neural network training
-
Lukoševičius M., Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3:127-149.
-
(2009)
Comput. Sci. Rev.
, vol.3
, pp. 127-149
-
-
Lukoševičius, M.1
Jaeger, H.2
-
29
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier H.R., Jain A., Dandy G.C., Sudheer K. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modell. Softw. 2010, 25:891-909.
-
(2010)
Environ. Modell. Softw.
, vol.25
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.4
-
30
-
-
84873922670
-
A connection between extreme learning machine and neural network kernel
-
Springer, Berlin, Heidelberg, A. Fred, J. Dietz, K. Liu, J. Filipe (Eds.) Knowledge Discovery, Knowledge Engineering and Knowledge Management
-
Parviainen E., Riihimaki J. A connection between extreme learning machine and neural network kernel. Communications in Computer and Information Science 2013, vol. 272:122-135. Springer, Berlin, Heidelberg. A. Fred, J. Dietz, K. Liu, J. Filipe (Eds.).
-
(2013)
Communications in Computer and Information Science
, vol.272
, pp. 122-135
-
-
Parviainen, E.1
Riihimaki, J.2
-
31
-
-
29844434966
-
-
Wiley-Interscience
-
Potter T., Colman B. Handbook of Weather, Climate, and Water: Atmospheric Chemistry, Hydrology, and Societal Impacts 2003, Wiley-Interscience.
-
(2003)
Handbook of Weather, Climate, and Water: Atmospheric Chemistry, Hydrology, and Societal Impacts
-
-
Potter, T.1
Colman, B.2
-
32
-
-
84914179053
-
R: A Language and Environment for Statistical Computing
-
R Core Team, 2014. R: A Language and Environment for Statistical Computing. http://www.R-project.org/.
-
(2014)
-
-
-
33
-
-
84855199264
-
Daily streamflow forecasting by machine learning methods with weather and climate inputs
-
Rasouli K., Hsieh W.W., Cannon A.J. Daily streamflow forecasting by machine learning methods with weather and climate inputs. J. Hydrol. 2012, 414-415:284-293.
-
(2012)
J. Hydrol.
, pp. 284-293
-
-
Rasouli, K.1
Hsieh, W.W.2
Cannon, A.J.3
-
34
-
-
85051374302
-
Feedforward neural networks with random weights
-
IEEE
-
Schmidt W.F., Kraaijveld M., Duin R.P. Feedforward neural networks with random weights. 11th IAPR International Conference on Pattern Recognition, 1992. Conference B: Pattern Recognition Methodology and Systems, Proceedings 1992, vol. II:1-4. IEEE.
-
(1992)
11th IAPR International Conference on Pattern Recognition, 1992. Conference B: Pattern Recognition Methodology and Systems, Proceedings
, vol.2
, pp. 1-4
-
-
Schmidt, W.F.1
Kraaijveld, M.2
Duin, R.P.3
-
36
-
-
75149184952
-
Artificial neural network model for river flow forecasting in a developing country
-
Shamseldin A.Y. Artificial neural network model for river flow forecasting in a developing country. J. Hydroinformatics 2010, 12:22-35.
-
(2010)
J. Hydroinformatics
, vol.12
, pp. 22-35
-
-
Shamseldin, A.Y.1
-
37
-
-
84869008963
-
Echo state networks and extreme learning machines: a comparative study on seasonal streamflow series prediction
-
Springer, Berlin, Heidelberg, T. Huang, Z. Zeng, C. Li, C. Leung (Eds.) Neural Information Processing
-
Siqueira H., Boccato L., Attux R., Lyra C. Echo state networks and extreme learning machines: a comparative study on seasonal streamflow series prediction. Lecture Notes in Computer Science 2012, vol. 7664:491-500. Springer, Berlin, Heidelberg. T. Huang, Z. Zeng, C. Li, C. Leung (Eds.).
-
(2012)
Lecture Notes in Computer Science
, vol.7664
, pp. 491-500
-
-
Siqueira, H.1
Boccato, L.2
Attux, R.3
Lyra, C.4
-
38
-
-
39449089195
-
Data-driven modelling: some past experiences and new approaches
-
Solomatine D.P., Ostfeld A. Data-driven modelling: some past experiences and new approaches. J. Hydroinformatics 2008, 10:3-22.
-
(2008)
J. Hydroinformatics
, vol.10
, pp. 3-22
-
-
Solomatine, D.P.1
Ostfeld, A.2
-
40
-
-
0036553604
-
The Canadian Updateable Model Output Statistics (UMOS) system: design and development tests
-
Wilson L.J., Vallée M. The Canadian Updateable Model Output Statistics (UMOS) system: design and development tests. Weather Forecasting 2002, 17:206-222.
-
(2002)
Weather Forecasting
, vol.17
, pp. 206-222
-
-
Wilson, L.J.1
Vallée, M.2
-
41
-
-
84892886293
-
Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
-
Wu W., Dandy G.C., Maier H.R. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Modell. Softw. 2014, 54:108-127.
-
(2014)
Environ. Modell. Softw.
, vol.54
, pp. 108-127
-
-
Wu, W.1
Dandy, G.C.2
Maier, H.R.3
|