메뉴 건너뛰기




Volumn 537, Issue , 2016, Pages 431-443

Forecasting daily streamflow using online sequential extreme learning machines

Author keywords

Extreme learning machine (ELM); Forecast; Machine learning; Online sequential ELM (OSELM); Streamflow

Indexed keywords

ARTIFICIAL INTELLIGENCE; E-LEARNING; FEEDFORWARD NEURAL NETWORKS; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; LINEAR REGRESSION; NETWORK LAYERS; RADIAL BASIS FUNCTION NETWORKS; STREAM FLOW;

EID: 84962783538     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2016.03.017     Document Type: Article
Times cited : (100)

References (41)
  • 1
    • 72449139311 scopus 로고    scopus 로고
    • Neural network hydroinformatics: maintaining scientific rigour
    • Springer, Berlin, Heidelberg, R. Abrahart, L. See, D. Solomatine (Eds.) Practical Hydroinformatics
    • Abrahart R., See L., Dawson C. Neural network hydroinformatics: maintaining scientific rigour. Water Science and Technology Library 2008, vol. 68:33-47. Springer, Berlin, Heidelberg. R. Abrahart, L. See, D. Solomatine (Eds.).
    • (2008) Water Science and Technology Library , vol.68 , pp. 33-47
    • Abrahart, R.1    See, L.2    Dawson, C.3
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 72149110312 scopus 로고    scopus 로고
    • Early flood warnings from empirical (expanded) downscaling of the full ECMWF Ensemble Prediction System
    • W10443
    • Bürger G., Reusser D., Kneis D. Early flood warnings from empirical (expanded) downscaling of the full ECMWF Ensemble Prediction System. Water Resour. Res. 2009, 45. W10443. 10.1029/2009WR007779.
    • (2009) Water Resour. Res. , vol.45
    • Bürger, G.1    Reusser, D.2    Kneis, D.3
  • 5
    • 84871651156 scopus 로고    scopus 로고
    • Reservoir computing and extreme learning machines for non-linear time-series data analysis
    • Butcher J., Verstraeten D., Schrauwen B., Day C., Haycock P. Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Networks 2013, 38:76-89.
    • (2013) Neural Networks , vol.38 , pp. 76-89
    • Butcher, J.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.4    Haycock, P.5
  • 7
    • 84904421004 scopus 로고    scopus 로고
    • Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
    • Chang F.J., Chen P.A., Lu Y.R., Huang E., Chang K.Y. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J. Hydrol. 2014, 517:836-846.
    • (2014) J. Hydrol. , vol.517 , pp. 836-846
    • Chang, F.J.1    Chen, P.A.2    Lu, Y.R.3    Huang, E.4    Chang, K.Y.5
  • 8
    • 33645990587 scopus 로고    scopus 로고
    • Computational intelligence in earth sciences and environmental applications: issues and challenges
    • Cherkassky V., Krasnopolsky V., Solomatine D., Valdes J. Computational intelligence in earth sciences and environmental applications: issues and challenges. Neural Networks 2006, 19:113-121.
    • (2006) Neural Networks , vol.19 , pp. 113-121
    • Cherkassky, V.1    Krasnopolsky, V.2    Solomatine, D.3    Valdes, J.4
  • 9
    • 84962832968 scopus 로고    scopus 로고
    • Neural network solutions to flood estimation at ungauged sites
    • Springer, Berlin, Heidelberg, R. Abrahart, L. See, D. Solomatine (Eds.) Practical Hydroinformatics
    • Dawson C. Neural network solutions to flood estimation at ungauged sites. Water Science and Technology Library 2008, vol. 68:49-57. Springer, Berlin, Heidelberg. R. Abrahart, L. See, D. Solomatine (Eds.).
    • (2008) Water Science and Technology Library , vol.68 , pp. 49-57
    • Dawson, C.1
  • 10
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 2009, 20:1352-1357.
    • (2009) IEEE Trans. Neural Networks , vol.20 , pp. 1352-1357
    • Feng, G.1    Huang, G.B.2    Lin, Q.3    Gay, R.4
  • 11
    • 84926443585 scopus 로고    scopus 로고
    • Development and operational testing of a super-ensemble artificial intelligence flood-forecast model for a Pacific Northwest river
    • Fleming S.W., Bourdin D.R., Campbell D., Stull R.B., Gardner T. Development and operational testing of a super-ensemble artificial intelligence flood-forecast model for a Pacific Northwest river. J. Am. Water Resour. Assoc. 2015, 51:502-512.
    • (2015) J. Am. Water Resour. Assoc. , vol.51 , pp. 502-512
    • Fleming, S.W.1    Bourdin, D.R.2    Campbell, D.3    Stull, R.B.4    Gardner, T.5
  • 12
    • 77953868716 scopus 로고    scopus 로고
    • Spatiotemporal mapping of ENSO and PDO surface meteorological signals in British Columbia, Yukon, and southeast Alaska
    • Fleming S.W., Whitfield P.H. Spatiotemporal mapping of ENSO and PDO surface meteorological signals in British Columbia, Yukon, and southeast Alaska. Atmos.-Ocean 2010, 48:122-131.
    • (2010) Atmos.-Ocean , vol.48 , pp. 122-131
    • Fleming, S.W.1    Whitfield, P.H.2
  • 13
    • 37248999362 scopus 로고    scopus 로고
    • Regime-dependent streamflow sensitivities to Pacific climate modes cross the Georgia-Puget transboundary ecoregion
    • Fleming S.W., Whitfield P.H., Moore R.D., Quilty E.J. Regime-dependent streamflow sensitivities to Pacific climate modes cross the Georgia-Puget transboundary ecoregion. Hydrol. Process. 2007, 21:3264-3287.
    • (2007) Hydrol. Process. , vol.21 , pp. 3264-3287
    • Fleming, S.W.1    Whitfield, P.H.2    Moore, R.D.3    Quilty, E.J.4
  • 16
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking R.R. The analysis and selection of variables in linear regression. Biometrics 1976, 32:1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 17
    • 84867099470 scopus 로고    scopus 로고
    • Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling
    • Hong Y.S.T. Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling. J. Hydrol. 2012, 468-469:11-21.
    • (2012) J. Hydrol. , pp. 11-21
    • Hong, Y.S.T.1
  • 19
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: a review
    • Huang G., Huang G.B., Song S., You K. Trends in extreme learning machines: a review. Neural Networks 2015, 61:32-48.
    • (2015) Neural Networks , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.B.2    Song, S.3    You, K.4
  • 20
    • 84906948723 scopus 로고    scopus 로고
    • An insight into extreme learning machines: random neurons, random features and kernels
    • Huang G.B. An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Comput. 2014, 6:376-390.
    • (2014) Cognitive Comput. , vol.6 , pp. 376-390
    • Huang, G.B.1
  • 22
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 23
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • Kumar D.N., Raju K.S., Sathish T. River flow forecasting using recurrent neural networks. Water Resour. Manage. 2004, 18:143-161.
    • (2004) Water Resour. Manage. , vol.18 , pp. 143-161
    • Kumar, D.N.1    Raju, K.S.2    Sathish, T.3
  • 24
    • 77958158373 scopus 로고    scopus 로고
    • Feature selection with the Boruta package
    • Kursa M.B., Rudnicki W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36:1-13.
    • (2010) J. Stat. Softw. , vol.36 , pp. 1-13
    • Kursa, M.B.1    Rudnicki, W.R.2
  • 25
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Lan Y., Soh Y.C., Huang G.B. Ensemble of online sequential extreme learning machine. Neurocomputing 2009, 72:3391-3395.
    • (2009) Neurocomputing , vol.72 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.B.3
  • 27
    • 84940039142 scopus 로고    scopus 로고
    • Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation
    • Lima A.R., Cannon A.J., Hsieh W.W. Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation. Environ. Modell. Softw. 2015, 73:175-188.
    • (2015) Environ. Modell. Softw. , vol.73 , pp. 175-188
    • Lima, A.R.1    Cannon, A.J.2    Hsieh, W.W.3
  • 28
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Lukoševičius M., Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3:127-149.
    • (2009) Comput. Sci. Rev. , vol.3 , pp. 127-149
    • Lukoševičius, M.1    Jaeger, H.2
  • 29
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H.R., Jain A., Dandy G.C., Sudheer K. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modell. Softw. 2010, 25:891-909.
    • (2010) Environ. Modell. Softw. , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.4
  • 30
    • 84873922670 scopus 로고    scopus 로고
    • A connection between extreme learning machine and neural network kernel
    • Springer, Berlin, Heidelberg, A. Fred, J. Dietz, K. Liu, J. Filipe (Eds.) Knowledge Discovery, Knowledge Engineering and Knowledge Management
    • Parviainen E., Riihimaki J. A connection between extreme learning machine and neural network kernel. Communications in Computer and Information Science 2013, vol. 272:122-135. Springer, Berlin, Heidelberg. A. Fred, J. Dietz, K. Liu, J. Filipe (Eds.).
    • (2013) Communications in Computer and Information Science , vol.272 , pp. 122-135
    • Parviainen, E.1    Riihimaki, J.2
  • 32
    • 84914179053 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Core Team, 2014. R: A Language and Environment for Statistical Computing. http://www.R-project.org/.
    • (2014)
  • 33
    • 84855199264 scopus 로고    scopus 로고
    • Daily streamflow forecasting by machine learning methods with weather and climate inputs
    • Rasouli K., Hsieh W.W., Cannon A.J. Daily streamflow forecasting by machine learning methods with weather and climate inputs. J. Hydrol. 2012, 414-415:284-293.
    • (2012) J. Hydrol. , pp. 284-293
    • Rasouli, K.1    Hsieh, W.W.2    Cannon, A.J.3
  • 36
    • 75149184952 scopus 로고    scopus 로고
    • Artificial neural network model for river flow forecasting in a developing country
    • Shamseldin A.Y. Artificial neural network model for river flow forecasting in a developing country. J. Hydroinformatics 2010, 12:22-35.
    • (2010) J. Hydroinformatics , vol.12 , pp. 22-35
    • Shamseldin, A.Y.1
  • 37
    • 84869008963 scopus 로고    scopus 로고
    • Echo state networks and extreme learning machines: a comparative study on seasonal streamflow series prediction
    • Springer, Berlin, Heidelberg, T. Huang, Z. Zeng, C. Li, C. Leung (Eds.) Neural Information Processing
    • Siqueira H., Boccato L., Attux R., Lyra C. Echo state networks and extreme learning machines: a comparative study on seasonal streamflow series prediction. Lecture Notes in Computer Science 2012, vol. 7664:491-500. Springer, Berlin, Heidelberg. T. Huang, Z. Zeng, C. Li, C. Leung (Eds.).
    • (2012) Lecture Notes in Computer Science , vol.7664 , pp. 491-500
    • Siqueira, H.1    Boccato, L.2    Attux, R.3    Lyra, C.4
  • 38
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: some past experiences and new approaches
    • Solomatine D.P., Ostfeld A. Data-driven modelling: some past experiences and new approaches. J. Hydroinformatics 2008, 10:3-22.
    • (2008) J. Hydroinformatics , vol.10 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 40
    • 0036553604 scopus 로고    scopus 로고
    • The Canadian Updateable Model Output Statistics (UMOS) system: design and development tests
    • Wilson L.J., Vallée M. The Canadian Updateable Model Output Statistics (UMOS) system: design and development tests. Weather Forecasting 2002, 17:206-222.
    • (2002) Weather Forecasting , vol.17 , pp. 206-222
    • Wilson, L.J.1    Vallée, M.2
  • 41
    • 84892886293 scopus 로고    scopus 로고
    • Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
    • Wu W., Dandy G.C., Maier H.R. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Modell. Softw. 2014, 54:108-127.
    • (2014) Environ. Modell. Softw. , vol.54 , pp. 108-127
    • Wu, W.1    Dandy, G.C.2    Maier, H.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.