-
1
-
-
78649336706
-
The DNA damage response: making it safe to play with knives
-
20965415,.;: –. Epub 2010/10/23. S1097-2765(10)00747-1 [pii]
-
Ciccia A, Elledge SJ, The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204. Epub 2010/10/23. S1097-2765(10)00747-1 [pii] doi: 10.1016/j.molcel.2010.09.01920965415.
-
(2010)
Mol Cell
, vol.40
, Issue.2
, pp. 179-204
-
-
Ciccia, A.1
Elledge, S.J.2
-
2
-
-
70350088548
-
Mechanisms of double-strand break repair in somatic mammalian cells
-
19772495,.;: –.;
-
Hartlerode AJ, Scully R, Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J. 2009;423(2):157–68. 19772495; doi: 10.1042/BJ20090942
-
(2009)
Biochem J
, vol.423
, Issue.2
, pp. 157-168
-
-
Hartlerode, A.J.1
Scully, R.2
-
3
-
-
84873320525
-
Mechanisms of programmed DNA lesions and genomic instability in the immune system
-
23374339,.;: –. Epub 2013/02/05. S0092-8674(13)00009-3 [pii]
-
Alt FW, Zhang Y, Meng FL, Guo C, Schwer B, Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell. 2013;152(3):417–29. Epub 2013/02/05. doi: 10.1016/j.cell.2013.01.007 S0092-8674(13)00009-3 [pii]. 23374339.
-
(2013)
Cell
, vol.152
, Issue.3
, pp. 417-429
-
-
Alt, F.W.1
Zhang, Y.2
Meng, F.L.3
Guo, C.4
Schwer, B.5
-
4
-
-
0034595010
-
The importance of repairing stalled replication forks
-
10716434,.;: –
-
Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ, The importance of repairing stalled replication forks. Nature. 2000;404(6773):37–41. doi: 10.1038/3500350110716434
-
(2000)
Nature
, vol.404
, Issue.6773
, pp. 37-41
-
-
Cox, M.M.1
Goodman, M.F.2
Kreuzer, K.N.3
Sherratt, D.J.4
Sandler, S.J.5
Marians, K.J.6
-
5
-
-
20444424939
-
Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
-
15935756,.;: –
-
Lambert S, Watson A, Sheedy DM, Martin B, Carr AM, Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell. 2005;121(5):689–702. 15935756. doi: 10.1016/j.cell.2005.03.022
-
(2005)
Cell
, vol.121
, Issue.5
, pp. 689-702
-
-
Lambert, S.1
Watson, A.2
Sheedy, D.M.3
Martin, B.4
Carr, A.M.5
-
6
-
-
72949123930
-
The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair
-
19965384,..;: –. Epub 2009/12/08
-
Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science. 2009;326(5960):1698–701. Epub 2009/12/08. doi: 10.1126/science.118237219965384.
-
(2009)
Science
, vol.326
, Issue.5960
, pp. 1698-1701
-
-
Knipscheer, P.1
Raschle, M.2
Smogorzewska, A.3
Enoiu, M.4
Ho, T.V.5
Scharer, O.D.6
-
7
-
-
81955161162
-
New insights into the formation and resolution of ultra-fine anaphase bridges
-
21782962,.;: –. Epub 2011/07/26. S1084-9521(11)00087-5 [pii]
-
Chan KL, Hickson ID, New insights into the formation and resolution of ultra-fine anaphase bridges. Seminars in cell & developmental biology. 2011;22(8):906–12. Epub 2011/07/26. doi: 10.1016/j.semcdb.2011.07.001 S1084-9521(11)00087-5 [pii]. 21782962.
-
(2011)
Seminars in cell & developmental biology
, vol.22
, Issue.8
, pp. 906-912
-
-
Chan, K.L.1
Hickson, I.D.2
-
8
-
-
84945311821
-
What is the DNA repair defect underlying Fanconi anemia?
-
26512453,.;: –
-
Duxin JP, Walter JC, What is the DNA repair defect underlying Fanconi anemia?Current opinion in cell biology. 2015;37:49–60. doi: 10.1016/j.ceb.2015.09.00226512453.
-
(2015)
Current opinion in cell biology
, vol.37
, pp. 49-60
-
-
Duxin, J.P.1
Walter, J.C.2
-
9
-
-
77649131406
-
Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis
-
20177395,.;: –. Epub 2010/02/24. nrm2851 [pii]
-
Moynahan ME, Jasin M, Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196–207. Epub 2010/02/24. doi: 10.1038/nrm2851 nrm2851 [pii]. 20177395.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, Issue.3
, pp. 196-207
-
-
Moynahan, M.E.1
Jasin, M.2
-
10
-
-
34249936595
-
Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks
-
17379580,.;: –
-
Nagaraju G, Scully R, Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair (Amst). 2007;6(7):1018–31. doi: 10.1016/j.dnarep.2007.02.02017379580.
-
(2007)
DNA Repair (Amst)
, vol.6
, Issue.7
, pp. 1018-1031
-
-
Nagaraju, G.1
Scully, R.2
-
11
-
-
84887402750
-
Replication Stress-Induced Genome Instability: The Dark Side of Replication Maintenance by Homologous Recombination
-
23643490,.. Epub 2013/05/07. S0022-2836(13)00271-4 [pii]
-
Carr AM, Lambert S, Replication Stress-Induced Genome Instability: The Dark Side of Replication Maintenance by Homologous Recombination. J Mol Biol. 2013. Epub 2013/05/07. S0022-2836(13)00271-4 [pii] doi: 10.1016/j.jmb.2013.04.02323643490.
-
(2013)
J Mol Biol
-
-
Carr, A.M.1
Lambert, S.2
-
12
-
-
77955479780
-
Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange
-
20705238,..;: –. Epub 2010/08/14
-
Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, Freon K, et al. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell. 2010;39(3):346–59. Epub 2010/08/14. doi: 10.1016/j.molcel.2010.07.01520705238.
-
(2010)
Mol Cell
, vol.39
, Issue.3
, pp. 346-359
-
-
Lambert, S.1
Mizuno, K.2
Blaisonneau, J.3
Martineau, S.4
Chanet, R.5
Freon, K.6
-
13
-
-
0034707053
-
In search of the tumour-suppressor functions of BRCA1 and BRCA2
-
11100717,.;: –
-
Scully R, Livingston DM, In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature. 2000;408(6811):429–32. doi: 10.1038/3504400011100717
-
(2000)
Nature
, vol.408
, Issue.6811
, pp. 429-432
-
-
Scully, R.1
Livingston, D.M.2
-
14
-
-
33846850422
-
Ten genes for inherited breast cancer
-
17292821,.;: –
-
Walsh T, King MC, Ten genes for inherited breast cancer. Cancer Cell. 2007;11(2):103–5. 17292821. doi: 10.1016/j.ccr.2007.01.010
-
(2007)
Cancer Cell
, vol.11
, Issue.2
, pp. 103-105
-
-
Walsh, T.1
King, M.C.2
-
15
-
-
0037169354
-
Cancer susceptibility and the functions of BRCA1 and BRCA2
-
11832208,.;: –
-
Venkitaraman AR, Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108(2):171–82. 11832208.
-
(2002)
Cell
, vol.108
, Issue.2
, pp. 171-182
-
-
Venkitaraman, A.R.1
-
16
-
-
54849404458
-
MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings
-
18809224,.;: –
-
McVey M, Lee SE, MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends in genetics: TIG. 2008;24(11):529–38. 18809224. doi: 10.1016/j.tig.2008.08.007
-
(2008)
Trends in genetics: TIG
, vol.24
, Issue.11
, pp. 529-538
-
-
McVey, M.1
Lee, S.E.2
-
17
-
-
84877321963
-
Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells
-
23610439,..;: –. Epub 2013/04/24. 1213431110 [pii]
-
Truong LN, Li Y, Shi LZ, Hwang PY, He J, Wang H, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A. 2013;110(19):7720–5. Epub 2013/04/24. doi: 10.1073/pnas.1213431110 1213431110 [pii]. 23610439.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.19
, pp. 7720-7725
-
-
Truong, L.N.1
Li, Y.2
Shi, L.Z.3
Hwang, P.Y.4
He, J.5
Wang, H.6
-
18
-
-
34548441098
-
Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution
-
17675364,..;: –
-
Bignell GR, Santarius T, Pole JC, Butler AP, Perry J, Pleasance E, et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome research. 2007;17(9):1296–303. 17675364. doi: 10.1101/gr.6522707
-
(2007)
Genome research
, vol.17
, Issue.9
, pp. 1296-1303
-
-
Bignell, G.R.1
Santarius, T.2
Pole, J.C.3
Butler, A.P.4
Perry, J.5
Pleasance, E.6
-
19
-
-
72949119310
-
Complex landscapes of somatic rearrangement in human breast cancer genomes
-
20033038,..;: –. Epub 2009/12/25. nature08645 [pii]
-
Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462(7276):1005–10. Epub 2009/12/25. nature08645 [pii] doi: 10.1038/nature0864520033038.
-
(2009)
Nature
, vol.462
, Issue.7276
, pp. 1005-1010
-
-
Stephens, P.J.1
McBride, D.J.2
Lin, M.L.3
Varela, I.4
Pleasance, E.D.5
Simpson, J.T.6
-
20
-
-
84877113990
-
Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms
-
23410887,..;: –
-
Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, Layer RM, et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome research. 2013;23(5):762–76. doi: 10.1101/gr.143677.11223410887.
-
(2013)
Genome research
, vol.23
, Issue.5
, pp. 762-776
-
-
Malhotra, A.1
Lindberg, M.2
Faust, G.G.3
Leibowitz, M.L.4
Clark, R.A.5
Layer, R.M.6
-
21
-
-
84957810275
-
Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement
-
26726318,.;: –
-
Willis NA, Rass E, Scully R, Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement. Trends Cancer. 2015;1(4):217–30. doi: 10.1016/j.trecan.2015.10.00726726318.
-
(2015)
Trends Cancer
, vol.1
, Issue.4
, pp. 217-230
-
-
Willis, N.A.1
Rass, E.2
Scully, R.3
-
22
-
-
0038799991
-
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
-
10357855,.;: –
-
Paques F, Haber JE, Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiology and molecular biology reviews: MMBR. 1999;63(2):349–404. 10357855.
-
(1999)
Microbiology and molecular biology reviews: MMBR
, vol.63
, Issue.2
, pp. 349-404
-
-
Paques, F.1
Haber, J.E.2
-
23
-
-
0031962185
-
Gene conversion tracts from double-strand break repair in mammalian cells
-
9418857,.;: –
-
Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M, Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol. 1998;18(1):93–101. 9418857
-
(1998)
Mol Cell Biol
, vol.18
, Issue.1
, pp. 93-101
-
-
Elliott, B.1
Richardson, C.2
Winderbaum, J.3
Nickoloff, J.A.4
Jasin, M.5
-
24
-
-
0028221221
-
Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity
-
8196629,.;: –
-
Sweetser DB, Hough H, Whelden JF, Arbuckle M, Nickoloff JA, Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol Cell Biol. 1994;14(6):3863–75. 8196629
-
(1994)
Mol Cell Biol
, vol.14
, Issue.6
, pp. 3863-3875
-
-
Sweetser, D.B.1
Hough, H.2
Whelden, J.F.3
Arbuckle, M.4
Nickoloff, J.A.5
-
25
-
-
0030779879
-
Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells
-
9343400,.;: –
-
Taghian DG, Nickoloff JA, Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol. 1997;17(11):6386–93. 9343400
-
(1997)
Mol Cell Biol
, vol.17
, Issue.11
, pp. 6386-6393
-
-
Taghian, D.G.1
Nickoloff, J.A.2
-
26
-
-
0034600975
-
Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells
-
10880452,.;: –
-
Johnson RD, Jasin M, Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. Embo J. 2000;19(13):3398–407. doi: 10.1093/emboj/19.13.339810880452
-
(2000)
Embo J
, vol.19
, Issue.13
, pp. 3398-3407
-
-
Johnson, R.D.1
Jasin, M.2
-
27
-
-
10044247068
-
Molecular analysis of sister chromatid recombination in mammalian cells
-
15590323,.;: –
-
Puget N, Knowlton M, Scully R, Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair (Amst). 2005;4(2):149–61. 15590323. doi: 10.1016/j.dnarep.2004.08.010
-
(2005)
DNA Repair (Amst)
, vol.4
, Issue.2
, pp. 149-161
-
-
Puget, N.1
Knowlton, M.2
Scully, R.3
-
28
-
-
33750339265
-
Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C
-
16954385,.;: –
-
Nagaraju G, Odate S, Xie A, Scully R, Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol Cell Biol. 2006;26(21):8075–86. 16954385. doi: 10.1128/MCB.01235-06
-
(2006)
Mol Cell Biol
, vol.26
, Issue.21
, pp. 8075-8086
-
-
Nagaraju, G.1
Odate, S.2
Xie, A.3
Scully, R.4
-
29
-
-
84884141940
-
BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids
-
23994874,.;:. Epub 2013/09/03. ncomms3404 [pii]
-
Chandramouly G, Kwok A, Huang B, Willis NA, Xie A, Scully R, BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids. Nat Commun. 2013;4:2404. Epub 2013/09/03. doi: 10.1038/ncomms3404 ncomms3404 [pii]. 23994874.
-
(2013)
Nat Commun
, vol.4
, pp. 2404
-
-
Chandramouly, G.1
Kwok, A.2
Huang, B.3
Willis, N.A.4
Xie, A.5
Scully, R.6
-
30
-
-
84903542170
-
BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks
-
24776801,..;: –
-
Willis NA, Chandramouly G, Huang B, Kwok A, Follonier C, Deng C, et al. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature. 2014;510(7506):556–9. doi: 10.1038/nature1329524776801.
-
(2014)
Nature
, vol.510
, Issue.7506
, pp. 556-559
-
-
Willis, N.A.1
Chandramouly, G.2
Huang, B.3
Kwok, A.4
Follonier, C.5
Deng, C.6
-
31
-
-
0036671755
-
XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination
-
12191483,.;: –
-
Brenneman MA, Wagener BM, Miller CA, Allen C, Nickoloff JA, XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination. Molecular Cell. 2002;10(2):387–95. 12191483
-
(2002)
Molecular Cell
, vol.10
, Issue.2
, pp. 387-395
-
-
Brenneman, M.A.1
Wagener, B.M.2
Miller, C.A.3
Allen, C.4
Nickoloff, J.A.5
-
32
-
-
0037038362
-
Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells
-
12422221,..;: –
-
Tauchi H, Kobayashi J, Morishima K, van Gent DC, Shiraishi T, Verkaik NS, et al. Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature. 2002;420(6911):93–8. doi: 10.1038/nature0112512422221
-
(2002)
Nature
, vol.420
, Issue.6911
, pp. 93-98
-
-
Tauchi, H.1
Kobayashi, J.2
Morishima, K.3
van Gent, D.C.4
Shiraishi, T.5
Verkaik, N.S.6
-
33
-
-
10944247548
-
Strand invasion involving short tract gene conversion is specifically suppressed in BRCA2-deficient hamster cells
-
15480413,.;: –. Epub 2004/10/14. 1208178 [pii]
-
Saleh-Gohari N, Helleday T, Strand invasion involving short tract gene conversion is specifically suppressed in BRCA2-deficient hamster cells. Oncogene. 2004;23(56):9136–41. Epub 2004/10/14. 1208178 [pii] doi: 10.1038/sj.onc.120817815480413.
-
(2004)
Oncogene
, vol.23
, Issue.56
, pp. 9136-9141
-
-
Saleh-Gohari, N.1
Helleday, T.2
-
34
-
-
67651227288
-
XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversion between sister chromatids
-
19470754,.
-
Nagaraju G, Hartlerode A, Kwok A, Chandramouly G, Scully R, XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversion between sister chromatids. Mol Cell Biol. 2009. 19470754. doi: 10.1128/MCB.01406-08
-
(2009)
Mol Cell Biol
-
-
Nagaraju, G.1
Hartlerode, A.2
Kwok, A.3
Chandramouly, G.4
Scully, R.5
-
35
-
-
84888875796
-
Break-induced DNA replication
-
23881940,.;. Epub 2013/07/25. a010397 [pii] cshperspect.a010397 [pii]
-
Anand RP, Lovett ST, Haber JE, Break-induced DNA replication. Cold Spring Harb Perspect Biol. 2013;5(12). Epub 2013/07/25. doi: 10.1101/cshperspect.a010397 a010397 [pii] cshperspect.a010397 [pii]. 23881940.
-
(2013)
Cold Spring Harb Perspect Biol
, vol.5
, Issue.12
-
-
Anand, R.P.1
Lovett, S.T.2
Haber, J.E.3
-
36
-
-
84870218426
-
Mutations arising during repair of chromosome breaks
-
23146099,.;: –. Epub 2012/11/14
-
Malkova A, Haber JE, Mutations arising during repair of chromosome breaks. Annual review of genetics. 2012;46:455–73. Epub 2012/11/14. doi: 10.1146/annurev-genet-110711-15554723146099.
-
(2012)
Annual review of genetics
, vol.46
, pp. 455-473
-
-
Malkova, A.1
Haber, J.E.2
-
37
-
-
42449130956
-
Break-induced replication: what is it and what is it for?
-
18414031,.;: –
-
Llorente B, Smith CE, Symington LS, Break-induced replication: what is it and what is it for?Cell Cycle. 2008;7(7):859–64. 18414031. doi: 10.4161/cc.7.7.5613
-
(2008)
Cell Cycle
, vol.7
, Issue.7
, pp. 859-864
-
-
Llorente, B.1
Smith, C.E.2
Symington, L.S.3
-
38
-
-
84882372684
-
Break-induced replication occurs by conservative DNA synthesis
-
23898170,.;: –. Epub 2013/07/31
-
Donnianni RA, Symington LS, Break-induced replication occurs by conservative DNA synthesis. Proc Natl Acad Sci U S A. 2013;110(33):13475–80. Epub 2013/07/31. doi: 10.1073/pnas.130980011023898170.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.33
, pp. 13475-13480
-
-
Donnianni, R.A.1
Symington, L.S.2
-
39
-
-
84885843906
-
Migrating bubble during break-induced replication drives conservative DNA synthesis
-
24025772,..;: –. Epub 2013/09/13. nature12584 [pii]
-
Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y, Deem A, et al. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature. 2013;502(7471):389–92. Epub 2013/09/13. doi: 10.1038/nature12584 nature12584 [pii]. 24025772.
-
(2013)
Nature
, vol.502
, Issue.7471
, pp. 389-392
-
-
Saini, N.1
Ramakrishnan, S.2
Elango, R.3
Ayyar, S.4
Zhang, Y.5
Deem, A.6
-
40
-
-
84885866032
-
Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration
-
24025768,..;: –. Epub 2013/09/13. nature12585 [pii]
-
Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, et al. Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature. 2013;502(7471):393–6. Epub 2013/09/13. doi: 10.1038/nature12585 nature12585 [pii]. 24025768.
-
(2013)
Nature
, vol.502
, Issue.7471
, pp. 393-396
-
-
Wilson, M.A.1
Kwon, Y.2
Xu, Y.3
Chung, W.H.4
Chi, P.5
Niu, H.6
-
41
-
-
34247611513
-
Template switching during break-induced replication
-
17410126,.;: –
-
Smith CE, Llorente B, Symington LS, Template switching during break-induced replication. Nature. 2007;447(7140):102–5. 17410126. doi: 10.1038/nature05723
-
(2007)
Nature
, vol.447
, Issue.7140
, pp. 102-105
-
-
Smith, C.E.1
Llorente, B.2
Symington, L.S.3
-
42
-
-
84964314244
-
High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae
-
24990991,.;: –
-
Yim E, O'Connell KE, St Charles J, Petes TD, High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae. Genetics. 2014;198(1):181–92. doi: 10.1534/genetics.114.16739524990991.
-
(2014)
Genetics
, vol.198
, Issue.1
, pp. 181-192
-
-
Yim, E.1
O'Connell, K.E.2
St Charles, J.3
Petes, T.D.4
-
43
-
-
0034461607
-
Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells
-
Richardson C, Jasin M, Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Molecular & Cellular Biology. 2000;20(23):9068–75.
-
(2000)
Molecular & Cellular Biology
, vol.20
, Issue.23
, pp. 9068-9075
-
-
Richardson, C.1
Jasin, M.2
-
44
-
-
84892743776
-
Break-induced replication repair of damaged forks induces genomic duplications in human cells
-
24310611,..;: –
-
Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science. 2014;343(6166):88–91. doi: 10.1126/science.124321124310611.
-
(2014)
Science
, vol.343
, Issue.6166
, pp. 88-91
-
-
Costantino, L.1
Sotiriou, S.K.2
Rantala, J.K.3
Magin, S.4
Mladenov, E.5
Helleday, T.6
-
45
-
-
77957235402
-
Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions
-
20460465,.;: –
-
Yu AM, McVey M, Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. 2010;38(17):5706–17. doi: 10.1093/nar/gkq37920460465.
-
(2010)
Nucleic Acids Res
, vol.38
, Issue.17
, pp. 5706-5717
-
-
Yu, A.M.1
McVey, M.2
-
46
-
-
77957369329
-
Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila
-
20617203,.;:
-
Chan SH, Yu AM, McVey M, Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS genetics. 2010;6(7):e1001005. doi: 10.1371/journal.pgen.100100520617203.
-
(2010)
PLoS genetics
, vol.6
, Issue.7
, pp. e1001005
-
-
Chan, S.H.1
Yu, A.M.2
McVey, M.3
-
47
-
-
37349096996
-
Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair
-
18158901,..;: –
-
Xie A, Hartlerode A, Stucki M, Odate S, Puget N, Kwok A, et al. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol Cell. 2007;28(6):1045–57. 18158901. doi: 10.1016/j.molcel.2007.12.005
-
(2007)
Mol Cell
, vol.28
, Issue.6
, pp. 1045-1057
-
-
Xie, A.1
Hartlerode, A.2
Stucki, M.3
Odate, S.4
Puget, N.5
Kwok, A.6
-
48
-
-
34748863465
-
IgH class switching and translocations use a robust non-classical end-joining pathway
-
17713479,..;: –
-
Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007;449(7161):478–82. 17713479. doi: 10.1038/nature06020
-
(2007)
Nature
, vol.449
, Issue.7161
, pp. 478-482
-
-
Yan, C.T.1
Boboila, C.2
Souza, E.K.3
Franco, S.4
Hickernell, T.R.5
Murphy, M.6
-
49
-
-
10944219768
-
Control of sister chromatid recombination by histone H2AX
-
15610743,..;: –
-
Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, et al. Control of sister chromatid recombination by histone H2AX. Mol Cell. 2004;16(6):1017–25. 15610743. doi: 10.1016/j.molcel.2004.12.007
-
(2004)
Mol Cell
, vol.16
, Issue.6
, pp. 1017-1025
-
-
Xie, A.1
Puget, N.2
Shim, I.3
Odate, S.4
Jarzyna, I.5
Bassing, C.H.6
-
50
-
-
0032417640
-
A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis
-
9875844,..;: –
-
Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ, et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell. 1998;95(7):891–902. 9875844.
-
(1998)
Cell
, vol.95
, Issue.7
, pp. 891-902
-
-
Gao, Y.1
Sun, Y.2
Frank, K.M.3
Dikkes, P.4
Fujiwara, Y.5
Seidl, K.J.6
-
51
-
-
0034612308
-
The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations
-
10823907,..;: –
-
Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA, et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci U S A. 2000;97(12):6630–3. 10823907. doi: 10.1073/pnas.110152897
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.12
, pp. 6630-6633
-
-
Ferguson, D.O.1
Sekiguchi, J.M.2
Chang, S.3
Frank, K.M.4
Gao, Y.5
DePinho, R.A.6
-
52
-
-
77950462986
-
Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation
-
20208544,.;: –
-
Simsek D, Jasin M, Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nature structural & molecular biology. 2010;17(4):410–6. doi: 10.1038/nsmb.177320208544.
-
(2010)
Nature structural & molecular biology
, vol.17
, Issue.4
, pp. 410-416
-
-
Simsek, D.1
Jasin, M.2
-
53
-
-
0031472370
-
Association of BRCA1 with Rad51 in mitotic and meiotic cells
-
9008167,..;: –
-
Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997;88(2):265–75. 9008167
-
(1997)
Cell
, vol.88
, Issue.2
, pp. 265-275
-
-
Scully, R.1
Chen, J.2
Plug, A.3
Xiao, Y.4
Weaver, D.5
Feunteun, J.6
-
54
-
-
84908431864
-
Chromosome rearrangements via template switching between diverged repeated sequences
-
25367035,..;: –
-
Anand RP, Tsaponina O, Greenwell PW, Lee CS, Du W, Petes TD, et al. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 2014;28(21):2394–406. doi: 10.1101/gad.250258.11425367035.
-
(2014)
Genes Dev
, vol.28
, Issue.21
, pp. 2394-2406
-
-
Anand, R.P.1
Tsaponina, O.2
Greenwell, P.W.3
Lee, C.S.4
Du, W.5
Petes, T.D.6
-
55
-
-
59249105978
-
A microhomology-mediated break-induced replication model for the origin of human copy number variation
-
19180184,.;:. Epub 2009/01/31
-
Hastings PJ, Ira G, Lupski JR, A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS genetics. 2009;5(1):e1000327. Epub 2009/01/31. doi: 10.1371/journal.pgen.100032719180184.
-
(2009)
PLoS genetics
, vol.5
, Issue.1
, pp. e1000327
-
-
Hastings, P.J.1
Ira, G.2
Lupski, J.R.3
-
56
-
-
37349109667
-
A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
-
18160035,.;: –
-
Lee JA, Carvalho CM, Lupski JR, A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 2007;131(7):1235–47. doi: 10.1016/j.cell.2007.11.03718160035.
-
(2007)
Cell
, vol.131
, Issue.7
, pp. 1235-1247
-
-
Lee, J.A.1
Carvalho, C.M.2
Lupski, J.R.3
-
57
-
-
3142673493
-
Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila
-
15238522,.;: –
-
McVey M, Adams M, Staeva-Vieira E, Sekelsky JJ, Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila. Genetics. 2004;167(2):699–705. 15238522. doi: 10.1534/genetics.103.025411
-
(2004)
Genetics
, vol.167
, Issue.2
, pp. 699-705
-
-
McVey, M.1
Adams, M.2
Staeva-Vieira, E.3
Sekelsky, J.J.4
-
58
-
-
84953374838
-
Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements
-
26669261,.;: –
-
Sakofsky CJ, Ayyar S, Deem AK, Chung WH, Ira G, Malkova A, Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements. Mol Cell. 2015;60(6):860–72. doi: 10.1016/j.molcel.2015.10.04126669261.
-
(2015)
Mol Cell
, vol.60
, Issue.6
, pp. 860-872
-
-
Sakofsky, C.J.1
Ayyar, S.2
Deem, A.K.3
Chung, W.H.4
Ira, G.5
Malkova, A.6
-
59
-
-
83255187901
-
Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage
-
21876003,.;: –. Epub 2011/08/31. MCB.05854-11 [pii]
-
Foster SS, Balestrini A, Petrini JH, Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol Cell Biol. 2011;31(21):4379–89. Epub 2011/08/31. doi: 10.1128/MCB.05854-11 MCB.05854-11 [pii]. 21876003.
-
(2011)
Mol Cell Biol
, vol.31
, Issue.21
, pp. 4379-4389
-
-
Foster, S.S.1
Balestrini, A.2
Petrini, J.H.3
-
60
-
-
8644233355
-
The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm
-
15542845,.;: –
-
Shima N, Munroe RJ, Schimenti JC, The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm. Mol Cell Biol. 2004;24(23):10381–9. doi: 10.1128/MCB.24.23.10381-10389.200415542845.
-
(2004)
Mol Cell Biol
, vol.24
, Issue.23
, pp. 10381-10389
-
-
Shima, N.1
Munroe, R.J.2
Schimenti, J.C.3
-
61
-
-
84901823399
-
Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans
-
24614976,.;: –
-
Roerink SF, van Schendel R, Tijsterman M, Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome research. 2014;24(6):954–62. doi: 10.1101/gr.170431.11324614976.
-
(2014)
Genome research
, vol.24
, Issue.6
, pp. 954-962
-
-
Roerink, S.F.1
van Schendel, R.2
Tijsterman, M.3
-
62
-
-
84871715412
-
DNA polymerase POLQ and cellular defense against DNA damage
-
23219161,.;: –
-
Yousefzadeh MJ, Wood RD, DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair (Amst). 2013;12(1):1–9. doi: 10.1016/j.dnarep.2012.10.00423219161.
-
(2013)
DNA Repair (Amst)
, vol.12
, Issue.1
, pp. 1-9
-
-
Yousefzadeh, M.J.1
Wood, R.D.2
-
63
-
-
84908326310
-
Mechanism of suppression of chromosomal instability by DNA polymerase POLQ
-
25275444,..;:
-
Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC, Tomida J, et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS genetics. 2014;10(10):e1004654. doi: 10.1371/journal.pgen.100465425275444.
-
(2014)
PLoS genetics
, vol.10
, Issue.10
, pp. e1004654
-
-
Yousefzadeh, M.J.1
Wyatt, D.W.2
Takata, K.3
Mu, Y.4
Hensley, S.C.5
Tomida, J.6
-
64
-
-
84992679760
-
Essential Roles for Polymerase theta-Mediated End Joining in the Repair of Chromosome Breaks
-
27453047,..
-
Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, et al. Essential Roles for Polymerase theta-Mediated End Joining in the Repair of Chromosome Breaks. Mol Cell. 2016. doi: 10.1016/j.molcel.2016.06.02027453047.
-
(2016)
Mol Cell
-
-
Wyatt, D.W.1
Feng, W.2
Conlin, M.P.3
Yousefzadeh, M.J.4
Roberts, S.A.5
Mieczkowski, P.6
-
65
-
-
84940205642
-
Mus81 and converging forks limit the mutagenicity of replication fork breakage
-
26273056,..;: –
-
Mayle R, Campbell IM, Beck CR, Yu Y, Wilson M, Shaw CA, et al. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science. 2015;349(6249):742–7. doi: 10.1126/science.aaa839126273056.
-
(2015)
Science
, vol.349
, Issue.6249
, pp. 742-747
-
-
Mayle, R.1
Campbell, I.M.2
Beck, C.R.3
Yu, Y.4
Wilson, M.5
Shaw, C.A.6
-
66
-
-
68249146431
-
Role of mammalian Mre11 in classical and alternative nonhomologous end joining
-
19633669,.;: –
-
Xie A, Kwok A, Scully R, Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nature structural & molecular biology. 2009;16(8):814–8. 19633669. doi: 10.1038/nsmb.1640
-
(2009)
Nature structural & molecular biology
, vol.16
, Issue.8
, pp. 814-818
-
-
Xie, A.1
Kwok, A.2
Scully, R.3
|