메뉴 건너뛰기




Volumn , Issue , 2015, Pages 143-171

From neural PCA to deep unsupervised learning

Author keywords

Deep learning; Denoising autoencoder; Denoising source separation; Invariant features; Ladder network; Unsupervised learning

Indexed keywords


EID: 85076816429     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-0-12-802806-3.00008-7     Document Type: Chapter
Times cited : (144)

References (26)
  • 1
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex
    • D.H. Hubel., T. Wiesel Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex J. Physiol. Lond. 160 1962 106-154.
    • (1962) J. Physiol. Lond. , vol.160 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.2
  • 2
    • 4444337497 scopus 로고
    • Neural network model for a mechanism of pattern recognition unaffected by shift in position - neocognitron
    • J62-A
    • K. Fukushima Neural network model for a mechanism of pattern recognition unaffected by shift in position - neocognitron Trans. IECE J62-A 10 1979 658-665.
    • (1979) Trans. IECE , Issue.10 , pp. 658-665
    • Fukushima, K.1
  • 3
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber Deep learning in neural networks: an overview Neural Networks 61 2015 85-117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton., R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 5
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton., S. Osindero., Y.-W. Teh A fast learning algorithm for deep belief nets Neural Comput. 18 7 2006 1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 10
    • 0012479268 scopus 로고    scopus 로고
    • Latent variable models
    • M. Jordan., MIT Press Cambridge, MA
    • C. Bishop Latent variable models M. Jordan. Learning in Graphical Models 1999 MIT Press Cambridge, MA 371-403.
    • (1999) Learning in Graphical Models , pp. 371-403
    • Bishop, C.1
  • 11
    • 0346724352 scopus 로고    scopus 로고
    • Hierarchical models of variance sources
    • H. Valpola., M. Harva., J. Karhunen Hierarchical models of variance sources Signal Process. 84 2 2004 267-282.
    • (2004) Signal Process. , vol.84 , Issue.2 , pp. 267-282
    • Valpola, H.1    Harva, M.2    Karhunen, J.3
  • 12
    • 84919796355 scopus 로고    scopus 로고
    • Proceedings of the 31st International Conference on Machine Learning,ICML’14, Beijing China
    • K. Gregor., I. Danihelka., A. Mnih., C. Blundell., D. Wierstra Deep autoregressive networks, in: Proceedings of the 31st International Conference on Machine Learning,ICML’14 2014 Beijing China 1242-1250.
    • (2014) Deep autoregressive networks , pp. 1242-1250
    • Gregor, K.1    Danihelka, I.2    Mnih, A.3    Blundell, C.4    Wierstra, D.5
  • 14
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja A simplified neuron model as a principal component analyzer J. Math. Biol. 15 1982 267-273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 15
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • E. Oja The nonlinear PCA learning rule in independent component analysis Neurocomputing 17 1 1997 25-46.
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 25-46
    • Oja, E.1
  • 16
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvärinen., E. Oja A fast fixed-point algorithm for independent component analysis Neural Comput. 9 7 1997 1483-1492.
    • (1997) Neural Comput. , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 17
    • 0344505705 scopus 로고    scopus 로고
    • Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood
    • A. Hyvärinen Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood Neurocomputing 22 1-3 1998 49-67.
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 49-67
    • Hyvärinen, A.1
  • 19
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A.P. Dempster., N.M. Laird., D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc. Ser. B 39 1 1977 1-38.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 20
    • 33745725597 scopus 로고    scopus 로고
    • Proceedings of the 6th International Conference onIndependent Component Analysis and Blind Signal Separation, ICA 2006, Charleston SC, USA
    • M.S.C. Almeida., H. Valpola., J. Särelä Separation of nonlinear image mixtures by denoising source separation Proceedings of the 6th International Conference onIndependent Component Analysis and Blind Signal Separation, ICA 2006 2006 Charleston SC, USA 8-15.
    • (2006) Separation of nonlinear image mixtures by denoising source separation , pp. 8-15
    • Almeida, M.S.C.1    Valpola, H.2    Särelä, J.3
  • 22
    • 84919786489 scopus 로고    scopus 로고
    • Proceedings of the 31st International Conference on Machine Learning, ICML’14, Beijing China
    • B. Uria., I. Murray., H. Larochelle A deep and tractable density estimator Proceedings of the 31st International Conference on Machine Learning, ICML’14 2014 Beijing China 467-475.
    • (2014) A deep and tractable density estimator , pp. 467-475
    • Uria, B.1    Murray, I.2    Larochelle, H.3
  • 23
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
    • A. Hyvärinen., P. Hoyer Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces Neural Comput. 12 7 2000 1705-1720.
    • (2000) Neural Comput. , vol.12 , Issue.7 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.2
  • 26
    • 0348226496 scopus 로고    scopus 로고
    • A neurodynamical cortical model of visual attention and invariant object recognition
    • G. Deco., E.T. Rolls A neurodynamical cortical model of visual attention and invariant object recognition Vision Res. 44 2004 621-642.
    • (2004) Vision Res. , vol.44 , pp. 621-642
    • Deco, G.1    Rolls, E.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.