-
1
-
-
33645410496
-
Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex
-
D.H. Hubel., T. Wiesel Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex J. Physiol. Lond. 160 1962 106-154.
-
(1962)
J. Physiol. Lond.
, vol.160
, pp. 106-154
-
-
Hubel, D.H.1
Wiesel, T.2
-
2
-
-
4444337497
-
Neural network model for a mechanism of pattern recognition unaffected by shift in position - neocognitron
-
J62-A
-
K. Fukushima Neural network model for a mechanism of pattern recognition unaffected by shift in position - neocognitron Trans. IECE J62-A 10 1979 658-665.
-
(1979)
Trans. IECE
, Issue.10
, pp. 658-665
-
-
Fukushima, K.1
-
3
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber Deep learning in neural networks: an overview Neural Networks 61 2015 85-117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
4
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton., R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
5
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G.E. Hinton., S. Osindero., Y.-W. Teh A fast learning algorithm for deep belief nets Neural Comput. 18 7 2006 1527-1554.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
10
-
-
0012479268
-
Latent variable models
-
M. Jordan., MIT Press Cambridge, MA
-
C. Bishop Latent variable models M. Jordan. Learning in Graphical Models 1999 MIT Press Cambridge, MA 371-403.
-
(1999)
Learning in Graphical Models
, pp. 371-403
-
-
Bishop, C.1
-
11
-
-
0346724352
-
Hierarchical models of variance sources
-
H. Valpola., M. Harva., J. Karhunen Hierarchical models of variance sources Signal Process. 84 2 2004 267-282.
-
(2004)
Signal Process.
, vol.84
, Issue.2
, pp. 267-282
-
-
Valpola, H.1
Harva, M.2
Karhunen, J.3
-
12
-
-
84919796355
-
-
Proceedings of the 31st International Conference on Machine Learning,ICML’14, Beijing China
-
K. Gregor., I. Danihelka., A. Mnih., C. Blundell., D. Wierstra Deep autoregressive networks, in: Proceedings of the 31st International Conference on Machine Learning,ICML’14 2014 Beijing China 1242-1250.
-
(2014)
Deep autoregressive networks
, pp. 1242-1250
-
-
Gregor, K.1
Danihelka, I.2
Mnih, A.3
Blundell, C.4
Wierstra, D.5
-
14
-
-
0020464111
-
A simplified neuron model as a principal component analyzer
-
E. Oja A simplified neuron model as a principal component analyzer J. Math. Biol. 15 1982 267-273.
-
(1982)
J. Math. Biol.
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
15
-
-
0343416807
-
The nonlinear PCA learning rule in independent component analysis
-
E. Oja The nonlinear PCA learning rule in independent component analysis Neurocomputing 17 1 1997 25-46.
-
(1997)
Neurocomputing
, vol.17
, Issue.1
, pp. 25-46
-
-
Oja, E.1
-
16
-
-
0346307721
-
A fast fixed-point algorithm for independent component analysis
-
A. Hyvärinen., E. Oja A fast fixed-point algorithm for independent component analysis Neural Comput. 9 7 1997 1483-1492.
-
(1997)
Neural Comput.
, vol.9
, Issue.7
, pp. 1483-1492
-
-
Hyvärinen, A.1
Oja, E.2
-
17
-
-
0344505705
-
Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood
-
A. Hyvärinen Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood Neurocomputing 22 1-3 1998 49-67.
-
(1998)
Neurocomputing
, vol.22
, Issue.1-3
, pp. 49-67
-
-
Hyvärinen, A.1
-
19
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A.P. Dempster., N.M. Laird., D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc. Ser. B 39 1 1977 1-38.
-
(1977)
J. R. Stat. Soc. Ser. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
20
-
-
33745725597
-
-
Proceedings of the 6th International Conference onIndependent Component Analysis and Blind Signal Separation, ICA 2006, Charleston SC, USA
-
M.S.C. Almeida., H. Valpola., J. Särelä Separation of nonlinear image mixtures by denoising source separation Proceedings of the 6th International Conference onIndependent Component Analysis and Blind Signal Separation, ICA 2006 2006 Charleston SC, USA 8-15.
-
(2006)
Separation of nonlinear image mixtures by denoising source separation
, pp. 8-15
-
-
Almeida, M.S.C.1
Valpola, H.2
Särelä, J.3
-
21
-
-
84893376517
-
-
Proceedings of the 31st International Conferenceon Machine Learning, ICML’14, Beijing China
-
Y. Bengio., É Thibodeau-Laufer., G. Alain., J. Yosinski Deep generative stochastic networks trainable by backprop Proceedings of the 31st International Conferenceon Machine Learning, ICML’14 2014 Beijing China 226-234.
-
(2014)
Deep generative stochastic networks trainable by backprop
, pp. 226-234
-
-
Bengio, Y.1
Thibodeau-Laufer, É.2
Alain, G.3
Yosinski, J.4
-
22
-
-
84919786489
-
-
Proceedings of the 31st International Conference on Machine Learning, ICML’14, Beijing China
-
B. Uria., I. Murray., H. Larochelle A deep and tractable density estimator Proceedings of the 31st International Conference on Machine Learning, ICML’14 2014 Beijing China 467-475.
-
(2014)
A deep and tractable density estimator
, pp. 467-475
-
-
Uria, B.1
Murray, I.2
Larochelle, H.3
-
23
-
-
0034222304
-
Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
-
A. Hyvärinen., P. Hoyer Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces Neural Comput. 12 7 2000 1705-1720.
-
(2000)
Neural Comput.
, vol.12
, Issue.7
, pp. 1705-1720
-
-
Hyvärinen, A.1
Hoyer, P.2
-
26
-
-
0348226496
-
A neurodynamical cortical model of visual attention and invariant object recognition
-
G. Deco., E.T. Rolls A neurodynamical cortical model of visual attention and invariant object recognition Vision Res. 44 2004 621-642.
-
(2004)
Vision Res.
, vol.44
, pp. 621-642
-
-
Deco, G.1
Rolls, E.T.2
|