메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 3546-3554

Semi-supervised learning with Ladder networks

Author keywords

[No Author keywords available]

Indexed keywords

COST FUNCTIONS; INFORMATION SCIENCE; LADDER NETWORKS; LADDERS;

EID: 84965136229     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1283)

References (33)
  • 3
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • ACM
    • Marc' Aurelio Ranzato and Martin Szummer. Semi-supervised learning of compact document representations with deep networks. In Proc. of ICML 2008, pages 792-799. ACM, 2008.
    • (2008) Proc. of ICML 2008 , pp. 792-799
    • Ranzato, M.A.1    Szummer, M.2
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 10
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Jocelyn Sietsma and Robert JF Dow. Creating artificial neural networks that generalize. Neural networks, 4(1):67-79, 1991.
    • (1991) Neural Networks , vol.4 , Issue.1 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 11
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371-3408, 2010.
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 12
    • 21844473003 scopus 로고    scopus 로고
    • Denoising source separation
    • Jaakko Särelä and Harri Valpola. Denoising source separation. JMLR, 6:233-272, 2005.
    • (2005) JMLR , vol.6 , pp. 233-272
    • Särelä, J.1    Valpola, H.2
  • 13
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (ICML), pages 448-456, 2015.
    • (2015) International Conference on Machine Learning (ICML) , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 17
    • 84922375195 scopus 로고    scopus 로고
    • Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
    • Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning, ICML 2013, 2013.
    • (2013) Workshop on Challenges in Representation Learning, ICML 2013
    • Lee, D.-H.1
  • 20
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15(1):1929-1958, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 27
    • 84867135004 scopus 로고    scopus 로고
    • Large-scale feature learning with spike-and-slab sparse coding
    • Ian Goodfellow, Yoshua Bengio, and Aaron C Courville. Large-scale feature learning with spike-and-slab sparse coding. In Proc. of ICML 2012, pages 1439-1446, 2012.
    • (2012) Proc. of ICML 2012 , pp. 1439-1446
    • Goodfellow, I.1    Bengio, Y.2    Courville, A.C.3
  • 28
    • 0040908393 scopus 로고
    • Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis
    • G. McLachlan. Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis. J. American Statistical Association, 70:365-369, 1975.
    • (1975) J. American Statistical Association , vol.70 , pp. 365-369
    • McLachlan, G.1
  • 31
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • IEEE
    • Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV 2011, pages 2018-2025. IEEE, 2011.
    • (2011) ICCV 2011 , pp. 2018-2025
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.