메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 876-884

Learning and selecting features jointly with point-wise gated Boltzmann machines

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING;

EID: 84897565124     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (86)

References (32)
  • 3
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • Boureau, Y. L., Bach, F., LeCun, Y., and Ponce, J. Learning mid-level features for recognition. In CVPR, 2010.
    • (2010) CVPR
    • Boureau, Y.L.1    Bach, F.2    LeCun, Y.3    Ponce, J.4
  • 6
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L., Fergus, R., and Perona, P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In CVPR Workshop on Generative Model Based Vision, 2004.
    • CVPR Workshop on Generative Model Based Vision, 2004
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 7
    • 84875952649 scopus 로고    scopus 로고
    • Unsupervised and supervised visual codes with restricted Boltzmann machines
    • Goh, H., Thome, N., Cord, M., and Lim, J. H. Unsupervised and supervised visual codes with restricted Boltzmann machines. In ECCV, 2012.
    • (2012) ECCV
    • Goh, H.1    Thome, N.2    Cord, M.3    Lim, J.H.4
  • 10
    • 84877781449 scopus 로고    scopus 로고
    • Weakly supervised learning of foreground-background segmentation using masked RBMs
    • Heess, N., Le Roux, N., and Winn, J. Weakly supervised learning of foreground-background segmentation using masked RBMs. In ICANN, 2011.
    • (2011) ICANN
    • Heess, N.1    Le Roux, N.2    Winn, J.3
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • Hinton, G. E., Osindero, S., and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 13
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain, A. and Zongker, D. Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):153-158, 1997. (Pubitemid 127828334)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1
  • 14
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • Larochelle, H. and Bengio, Y. Classification using discriminative restricted Boltzmann machines. In ICML, 2008.
    • (2008) ICML
    • Larochelle, H.1    Bengio, Y.2
  • 15
    • 50249093806 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007.
    • (2007) ICML
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 16
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 17
    • 79951571992 scopus 로고    scopus 로고
    • Learning a generative model of images by factoring appearance and shape
    • Le Roux, N., Heess, N., Shotton, J., and Winn, J. Learning a generative model of images by factoring appearance and shape. Neural Computation, 23(3):593-650, 2011.
    • (2011) Neural Computation , vol.23 , Issue.3 , pp. 593-650
    • Le Roux, N.1    Heess, N.2    Shotton, J.3    Winn, J.4
  • 18
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief network model for visual area V2
    • Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep belief network model for visual area V2. In NIPS, 2008.
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 19
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011.
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 20
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order Boltzmann machines
    • Memisevic, R. and Hinton, G. E. Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Computation, 22 (6): 1473-1492, 2010.
    • (2010) Neural Computation , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 21
    • 85126846488 scopus 로고    scopus 로고
    • Implicit mixtures of restricted Boltzmann machines
    • Nair, V. and Hinton, G. E. Implicit mixtures of restricted Boltzmann machines. In NIPS, 2008.
    • (2008) NIPS
    • Nair, V.1    Hinton, G.E.2
  • 22
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. Efficient learning of sparse representations with an energy-based model. In NIPS, 2007.
    • (2007) NIPS
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 23
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. Contractive auto-encoders: Explicit invariance during feature extraction. In ICML, 2011.
    • (2011) ICML
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 24
    • 84876218917 scopus 로고    scopus 로고
    • Disentangling factors of variation for facial expression recognition
    • Rifai, S., Bengio, Y., Courville, A., Vincent, P., and Mirza, M. Disentangling factors of variation for facial expression recognition. In ECCV, 2012.
    • (2012) ECCV
    • Rifai, S.1    Bengio, Y.2    Courville, A.3    Vincent, P.4    Mirza, M.5
  • 26
    • 84867120801 scopus 로고    scopus 로고
    • Learning invariant representations with local transformations
    • Sohn, K. and Lee, H. Learning invariant representations with local transformations. In ICML, 2012.
    • (2012) ICML
    • Sohn, K.1    Lee, H.2
  • 27
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • Sohn, K., Jung, D. Y., Lee, H., and Hero, A. O. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In ICCV, 2011.
    • (2011) ICCV
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3    Hero, A.O.4
  • 28
    • 84866720201 scopus 로고    scopus 로고
    • Robust Boltzmann machines for recognition and denoising
    • Tang, Y., Salakhutdinov, R., and Hinton, G. E. Robust Boltzmann machines for recognition and denoising. In CVPR, 2012.
    • (2012) CVPR
    • Tang, Y.1    Salakhutdinov, R.2    Hinton, G.E.3
  • 29
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.A.4
  • 31
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • Yang, J., Yu, K., Gong, Y., and Huang, T. S. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.S.4
  • 32
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Yang, Y. and Pedersen, J. O. A comparative study on feature selection in text categorization. In ICML, 1997.
    • (1997) ICML
    • Yang, Y.1    Pedersen, J.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.