-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training of deep networks. In NIPS, 2007.
-
(2007)
NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
3
-
-
77955993281
-
Learning mid-level features for recognition
-
Boureau, Y. L., Bach, F., LeCun, Y., and Ponce, J. Learning mid-level features for recognition. In CVPR, 2010.
-
(2010)
CVPR
-
-
Boureau, Y.L.1
Bach, F.2
LeCun, Y.3
Ponce, J.4
-
4
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. The pascal visual object classes (voc) challenge. International journal of computer vision, 88 (2):303-338, 2010.
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
5
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., and Lin, C. J. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9: 1871-1874, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
6
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
Fei-Fei, L., Fergus, R., and Perona, P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In CVPR Workshop on Generative Model Based Vision, 2004.
-
CVPR Workshop on Generative Model Based Vision, 2004
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
7
-
-
84875952649
-
Unsupervised and supervised visual codes with restricted Boltzmann machines
-
Goh, H., Thome, N., Cord, M., and Lim, J. H. Unsupervised and supervised visual codes with restricted Boltzmann machines. In ECCV, 2012.
-
(2012)
ECCV
-
-
Goh, H.1
Thome, N.2
Cord, M.3
Lim, J.H.4
-
8
-
-
34948904828
-
-
Technical report, California Institute of Technology
-
Griffin, G., Holub, A., and Perona, P. Caltech-256 object category dataset. Technical report, California Institute of Technology, 2007.
-
(2007)
Caltech-256 Object Category Dataset
-
-
Griffin, G.1
Holub, A.2
Perona, P.3
-
10
-
-
84877781449
-
Weakly supervised learning of foreground-background segmentation using masked RBMs
-
Heess, N., Le Roux, N., and Winn, J. Weakly supervised learning of foreground-background segmentation using masked RBMs. In ICANN, 2011.
-
(2011)
ICANN
-
-
Heess, N.1
Le Roux, N.2
Winn, J.3
-
11
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
12
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
DOI 10.1162/neco.2006.18.7.1527
-
Hinton, G. E., Osindero, S., and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006. (Pubitemid 44024729)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
13
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
Jain, A. and Zongker, D. Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):153-158, 1997. (Pubitemid 127828334)
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
-
14
-
-
56449110012
-
Classification using discriminative restricted Boltzmann machines
-
Larochelle, H. and Bengio, Y. Classification using discriminative restricted Boltzmann machines. In ICML, 2008.
-
(2008)
ICML
-
-
Larochelle, H.1
Bengio, Y.2
-
15
-
-
50249093806
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007.
-
(2007)
ICML
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
16
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
17
-
-
79951571992
-
Learning a generative model of images by factoring appearance and shape
-
Le Roux, N., Heess, N., Shotton, J., and Winn, J. Learning a generative model of images by factoring appearance and shape. Neural Computation, 23(3):593-650, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.3
, pp. 593-650
-
-
Le Roux, N.1
Heess, N.2
Shotton, J.3
Winn, J.4
-
18
-
-
85161980001
-
Sparse deep belief network model for visual area V2
-
Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep belief network model for visual area V2. In NIPS, 2008.
-
(2008)
NIPS
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
19
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011.
-
(2011)
Communications of the ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
20
-
-
77953520240
-
Learning to represent spatial transformations with factored higher-order Boltzmann machines
-
Memisevic, R. and Hinton, G. E. Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Computation, 22 (6): 1473-1492, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.6
, pp. 1473-1492
-
-
Memisevic, R.1
Hinton, G.E.2
-
21
-
-
85126846488
-
Implicit mixtures of restricted Boltzmann machines
-
Nair, V. and Hinton, G. E. Implicit mixtures of restricted Boltzmann machines. In NIPS, 2008.
-
(2008)
NIPS
-
-
Nair, V.1
Hinton, G.E.2
-
22
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. Efficient learning of sparse representations with an energy-based model. In NIPS, 2007.
-
(2007)
NIPS
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
23
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. Contractive auto-encoders: Explicit invariance during feature extraction. In ICML, 2011.
-
(2011)
ICML
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
24
-
-
84876218917
-
Disentangling factors of variation for facial expression recognition
-
Rifai, S., Bengio, Y., Courville, A., Vincent, P., and Mirza, M. Disentangling factors of variation for facial expression recognition. In ECCV, 2012.
-
(2012)
ECCV
-
-
Rifai, S.1
Bengio, Y.2
Courville, A.3
Vincent, P.4
Mirza, M.5
-
26
-
-
84867120801
-
Learning invariant representations with local transformations
-
Sohn, K. and Lee, H. Learning invariant representations with local transformations. In ICML, 2012.
-
(2012)
ICML
-
-
Sohn, K.1
Lee, H.2
-
27
-
-
84863049755
-
Efficient learning of sparse, distributed, convolutional feature representations for object recognition
-
Sohn, K., Jung, D. Y., Lee, H., and Hero, A. O. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In ICCV, 2011.
-
(2011)
ICCV
-
-
Sohn, K.1
Jung, D.Y.2
Lee, H.3
Hero, A.O.4
-
28
-
-
84866720201
-
Robust Boltzmann machines for recognition and denoising
-
Tang, Y., Salakhutdinov, R., and Hinton, G. E. Robust Boltzmann machines for recognition and denoising. In CVPR, 2012.
-
(2012)
CVPR
-
-
Tang, Y.1
Salakhutdinov, R.2
Hinton, G.E.3
-
29
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
-
30
-
-
84898948710
-
Feature selection for svms
-
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V. Feature selection for svms. In NIPS, 2001.
-
(2001)
NIPS
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
31
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
Yang, J., Yu, K., Gong, Y., and Huang, T. S. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
-
(2009)
CVPR
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.S.4
-
32
-
-
0003141935
-
A comparative study on feature selection in text categorization
-
Yang, Y. and Pedersen, J. O. A comparative study on feature selection in text categorization. In ICML, 1997.
-
(1997)
ICML
-
-
Yang, Y.1
Pedersen, J.O.2
|