메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2794-2802

Unsupervised learning of visual representations using videos

Author keywords

[No Author keywords available]

Indexed keywords

NEURAL NETWORKS; UNSUPERVISED LEARNING;

EID: 84973889989     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.320     Document Type: Conference Paper
Times cited : (1173)

References (56)
  • 1
    • 34548574887 scopus 로고    scopus 로고
    • Surf: Speeded up robust features
    • 3
    • H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In ECCV, 2006. 3
    • (2006) ECCV
    • Bay, H.1    Tuytelaars, T.2    Gool, L.V.3
  • 2
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • 2
    • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. TPAMI, 35 (8): 1798-1828, 2013. 2
    • (2013) TPAMI , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 4
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • 2
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In CVPR, 2005. 2
    • (2005) CVPR
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • 2
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013. 2
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 7
    • 84959227156 scopus 로고    scopus 로고
    • Context as supervisory signal: Discovering objects with predictable context
    • 2
    • C. Doersch, A. Gupta, and A. A. Efros. Context as supervisory signal: Discovering objects with predictable context. In ECCV, 2014. 2
    • (2014) ECCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 8
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • 2
    • C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015. 2
    • (2015) ICCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 9
    • 84866707640 scopus 로고    scopus 로고
    • The shape boltzmann machine: A strong model of object shape
    • 2
    • S. M. A. Eslami, N. Heess, and J. Winn. The shape boltzmann machine: A strong model of object shape. In CVPR, 2012. 2
    • (2012) CVPR
    • Eslami, S.M.A.1    Heess, N.2    Winn, J.3
  • 10
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (voc) challenge
    • 6
    • M. Everingham, L. V. Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88 (2): 303-338, 2010. 6
    • (2010) IJCV , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1    Gool, L.V.2    Williams, C.K.3    Winn, J.4    Zisserman, A.5
  • 11
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • 2
    • P. Foldiak. Learning invariance from transformation sequences. Neural Computation, 3 (2): 194-200, 1991. 2
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 194-200
    • Foldiak, P.1
  • 12
    • 84898832490 scopus 로고    scopus 로고
    • Data-driven 3D primitives for single image understanding
    • 8
    • D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for single image understanding. In ICCV, 2013. 8
    • (2013) ICCV
    • Fouhey, D.F.1    Gupta, A.2    Hebert, M.3
  • 13
    • 84959200391 scopus 로고    scopus 로고
    • Unfolding an indoor origami world
    • 8
    • D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami world. In ECCV, 2014. 8
    • (2014) ECCV
    • Fouhey, D.F.1    Gupta, A.2    Hebert, M.3
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 5, 6, 7
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 5, 6, 7
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 15
    • 84973875940 scopus 로고    scopus 로고
    • Deep convolutional ranking for multilabel image annotation
    • 2
    • Y. Gong, Y. Jia, T. K. Leung, A. Toshev, and S. Ioffe. Deep convolutional ranking for multilabel image annotation. In ICLR, 2007. 2
    • (2007) ICLR
    • Gong, Y.1    Jia, Y.2    Leung, T.K.3    Toshev, A.4    Ioffe, S.5
  • 17
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • 2
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006. 2
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 18
    • 84887395819 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • 6
    • B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012. 6
    • (2012) ECCV
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 20
    • 0029652445 scopus 로고
    • The" wake-sleep" algorithm for unsupervised neural networks
    • 2
    • G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The" wake-sleep" algorithm for unsupervised neural networks. Science, 268 (5214): 1158-1161, 1995. 2
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 2
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313: 504-507, 2006. 2
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 4
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 4
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 84959197795 scopus 로고    scopus 로고
    • Discriminatively trained dense surface normal estimation
    • 8
    • L. Ladický, B. Zeisl, and M. Pollefeys. Discriminatively trained dense surface normal estimation. In ECCV, 2014. 8
    • (2014) ECCV
    • Ladický, L.1    Zeisl, B.2    Pollefeys, M.3
  • 27
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • 2
    • Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011. 2
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 29
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 2
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009. 2
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 32
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1
    • D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 60 (2): 91-110, 2004. 1
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 33
    • 84866665255 scopus 로고    scopus 로고
    • Hierarchical face parsing via deep learning
    • 2
    • P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep learning. In CVPR, 2012. 2
    • (2012) CVPR
    • Luo, P.1    Wang, X.2    Tang, X.3
  • 34
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • 1, 2
    • H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. In ICML, 2009. 1, 2
    • (2009) ICML
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 35
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • 1, 2
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision research, 1997. 1, 2
    • (1997) Vision Research
    • Olshausen, B.A.1    Field, D.J.2
  • 36
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • 6
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009. 6
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 37
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • 1
    • M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007. 1
    • (2007) CVPR
    • Ranzato, M.A.1    Huang, F.J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 38
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • 2
    • B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006. 2
    • (2006) CVPR
    • Russell, B.C.1    Efros, A.A.2    Sivic, J.3    Freeman, W.T.4    Zisserman, A.5
  • 39
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multi-stage feature learning
    • 2
    • P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-stage feature learning. In CVPR, 2013. 2
    • (2013) CVPR
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    LeCun, Y.4
  • 40
    • 84881536861 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from RGBD images
    • 8
    • N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from RGBD images. In ECCV, 2012. 8
    • (2012) ECCV
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 41
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • 2
    • S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012. 2
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.A.3
  • 44
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • 1, 2
    • N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, 2012. 1, 2
    • (2012) NIPS
    • Srivastava, N.1    Salakhutdinov, R.R.2
  • 45
    • 77956003890 scopus 로고    scopus 로고
    • Unsupervised learning of invariant features using video
    • 2
    • D. Stavens and S. Thrun. Unsupervised learning of invariant features using video. In CVPR, 2010. 2
    • (2010) CVPR
    • Stavens, D.1    Thrun, S.2
  • 46
    • 80053149752 scopus 로고    scopus 로고
    • Describing visual scenes using transformed dirichlet processes
    • 2
    • E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky. Describing visual scenes using transformed dirichlet processes. In NIPS, 2005. 2
    • (2005) NIPS
    • Sudderth, E.B.1    Torralba, A.2    Freeman, W.T.3    Willsky, A.S.4
  • 47
    • 84866720201 scopus 로고    scopus 로고
    • Robust boltzmann machines for recognition and denoising
    • 2
    • Y. Tang, R. Salakhutdinov, and G. Hinton. Robust boltzmann machines for recognition and denoising. In CVPR, 2012. 2
    • (2012) CVPR
    • Tang, Y.1    Salakhutdinov, R.2    Hinton, G.3
  • 48
    • 80052914864 scopus 로고    scopus 로고
    • Convolutional learning of spatio-temporal features
    • 1, 2
    • G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. In ECCV, 2010. 1, 2
    • (2010) ECCV
    • Taylor, G.W.1    Fergus, R.2    LeCun, Y.3    Bregler, C.4
  • 49
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • 1, 2
    • P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008. 1, 2
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.4
  • 50
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • 3
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013. 3
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 52
    • 84959234840 scopus 로고    scopus 로고
    • Designing deep networks for surface normal estimation
    • 8
    • X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. In CVPR, 2015. 8
    • (2015) CVPR
    • Wang, X.1    Fouhey, D.F.2    Gupta, A.3
  • 53
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • 2
    • L. Wiskott and T. J. Sejnowski. Slow feature analysis: unsupervised learning of invariances. Neural Computation, 14: 715-770, 2002. 2
    • (2002) Neural Computation , vol.14 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 54
    • 84959233990 scopus 로고    scopus 로고
    • Learning descriptors for object recognition and 3d pose estimation
    • 2
    • P. Wohlhart and V. Lepetit. Learning descriptors for object recognition and 3d pose estimation. In CVPR, 2015. 2
    • (2015) CVPR
    • Wohlhart, P.1    Lepetit, V.2
  • 55
    • 84942436418 scopus 로고    scopus 로고
    • Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification
    • 2
    • R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. TIP, 24 (12): 4766-4779, 2015. 2
    • (2015) TIP , vol.24 , Issue.12 , pp. 4766-4779
    • Zhang, R.1    Lin, L.2    Zhang, R.3    Zuo, W.4    Zhang, L.5
  • 56
    • 84877777295 scopus 로고    scopus 로고
    • Deep learning of invariant features via simulated fixations in video
    • 1, 2
    • W. Y. Zou, S. Zhu, A. Y. Ng, and K. Yu. Deep learning of invariant features via simulated fixations in video. In NIPS, 2012. 1, 2
    • (2012) NIPS
    • Zou, W.Y.1    Zhu, S.2    Ng, A.Y.3    Yu, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.