-
1
-
-
77955827519
-
The origins and evolution of the p53 family of genes
-
1 Belyi, V.A., et al. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol, 2, 2010, a001198.
-
(2010)
Cold Spring Harb. Perspect. Biol
, vol.2
, pp. a001198
-
-
Belyi, V.A.1
-
2
-
-
42449114966
-
Transcriptional control of human p53-regulated genes
-
2 Riley, T., et al. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell. Biol. 9 (2008), 402–412.
-
(2008)
Nat. Rev. Mol. Cell. Biol.
, vol.9
, pp. 402-412
-
-
Riley, T.1
-
3
-
-
33646807491
-
Transcriptional regulation by p53: one protein, many possibilities
-
3 Laptenko, O., Prives, C., Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13 (2006), 951–961.
-
(2006)
Cell Death Differ.
, vol.13
, pp. 951-961
-
-
Laptenko, O.1
Prives, C.2
-
4
-
-
0030941458
-
p53, the cellular gatekeeper for growth and division
-
4 Levine, A.J., p53, the cellular gatekeeper for growth and division. Cell 88 (1997), 323–331.
-
(1997)
Cell
, vol.88
, pp. 323-331
-
-
Levine, A.J.1
-
5
-
-
65349103899
-
Blinded by the light: the growing complexity of p53
-
5 Vousden, K.H., Prives, C., Blinded by the light: the growing complexity of p53. Cell 137 (2009), 413–431.
-
(2009)
Cell
, vol.137
, pp. 413-431
-
-
Vousden, K.H.1
Prives, C.2
-
6
-
-
0034507632
-
Transcription of eukaryotic protein-coding genes
-
6 Lee, T.I., Young, R.A., Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34 (2000), 77–137.
-
(2000)
Annu. Rev. Genet.
, vol.34
, pp. 77-137
-
-
Lee, T.I.1
Young, R.A.2
-
7
-
-
85006561817
-
Genes & Signals
-
Cold Spring Harbor Laboratory
-
7 Ptashne, M., Gann, A., Genes & Signals. 2001, Cold Spring Harbor Laboratory.
-
(2001)
-
-
Ptashne, M.1
Gann, A.2
-
9
-
-
47649096991
-
Structural biology of the tumor suppressor p53
-
9 Joerger, A.C., Fersht, A.R., Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77 (2008), 557–582.
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 557-582
-
-
Joerger, A.C.1
Fersht, A.R.2
-
10
-
-
0026018256
-
A DNA binding domain is contained in the C-terminus of wild type p53 protein
-
10 Foord, O.S., et al. A DNA binding domain is contained in the C-terminus of wild type p53 protein. Nucleic Acids Res. 19 (1991), 5191–5198.
-
(1991)
Nucleic Acids Res.
, vol.19
, pp. 5191-5198
-
-
Foord, O.S.1
-
11
-
-
0026669469
-
p53 function and dysfunction
-
11 Vogelstein, B., Kinzler, K.W., p53 function and dysfunction. Cell 70 (1992), 523–526.
-
(1992)
Cell
, vol.70
, pp. 523-526
-
-
Vogelstein, B.1
Kinzler, K.W.2
-
12
-
-
0034862475
-
The C-terminus of p53: the more you learn the less you know
-
12 Ahn, J., Prives, C., The C-terminus of p53: the more you learn the less you know. Nat. Struct. Biol. 8 (2001), 730–732.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 730-732
-
-
Ahn, J.1
Prives, C.2
-
13
-
-
0036415663
-
p53 contains large unstructured regions in its native state
-
13 Bell, S., et al. p53 contains large unstructured regions in its native state. J. Mol. Biol. 322 (2002), 917–927.
-
(2002)
J. Mol. Biol.
, vol.322
, pp. 917-927
-
-
Bell, S.1
-
14
-
-
36749037699
-
Mining alpha-helix-forming molecular recognition features with cross species sequence alignments
-
14 Cheng, Y., et al. Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46 (2007), 13468–13477.
-
(2007)
Biochemistry
, vol.46
, pp. 13468-13477
-
-
Cheng, Y.1
-
15
-
-
17044391806
-
Modulation of binding of DNA to the C-terminal domain of p53 by acetylation
-
15 Friedler, A., et al. Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure 13 (2005), 629–636.
-
(2005)
Structure
, vol.13
, pp. 629-636
-
-
Friedler, A.1
-
16
-
-
84874071407
-
Intrinsically disordered regions of p53 family are highly diversified in evolution
-
16 Xue, B., et al. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta 1834 (2013), 725–738.
-
(2013)
Biochim. Biophys. Acta
, vol.1834
, pp. 725-738
-
-
Xue, B.1
-
17
-
-
84942155810
-
Intrinsically disordered proteins: emerging interaction specialists
-
17 Tompa, P., et al. Intrinsically disordered proteins: emerging interaction specialists. Curr. Opin. Struct. Biol. 35 (2015), 49–59.
-
(2015)
Curr. Opin. Struct. Biol.
, vol.35
, pp. 49-59
-
-
Tompa, P.1
-
18
-
-
79958029735
-
Evolution and disorder
-
18 Brown, C.J., et al. Evolution and disorder. Curr. Opin. Struct. Biol. 21 (2011), 441–446.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 441-446
-
-
Brown, C.J.1
-
19
-
-
0033945124
-
Structure of the negative regulatory domain of p53 bound to S100B(betabeta)
-
19 Rustandi, R.R., et al. Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat. Struct. Biol. 7 (2000), 570–574.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 570-574
-
-
Rustandi, R.R.1
-
20
-
-
10744233648
-
Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation
-
20 Mujtaba, S., et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell. 13 (2004), 251–263.
-
(2004)
Mol. Cell.
, vol.13
, pp. 251-263
-
-
Mujtaba, S.1
-
21
-
-
84930189683
-
Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1
-
21 Tong, Q., et al. Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1. Structure 23 (2015), 312–321.
-
(2015)
Structure
, vol.23
, pp. 312-321
-
-
Tong, Q.1
-
22
-
-
84930189594
-
An acetyl–methyl switch drives a conformational change in p53
-
322-231
-
22 Tong, Q., et al. An acetyl–methyl switch drives a conformational change in p53. Structure, 23, 2015 322-231.
-
(2015)
Structure
, vol.23
-
-
Tong, Q.1
-
23
-
-
70450235184
-
Regulation of p53 – insights into a complex process
-
23 Boehme, K.A., Blattner, C., Regulation of p53 – insights into a complex process. Crit. Rev. Biochem. Mol. Biol. 44 (2009), 367–392.
-
(2009)
Crit. Rev. Biochem. Mol. Biol.
, vol.44
, pp. 367-392
-
-
Boehme, K.A.1
Blattner, C.2
-
24
-
-
80053064491
-
The impact of acetylation and deacetylation on the p53 pathway
-
24 Brooks, C.L., Gu, W., The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2 (2011), 456–462.
-
(2011)
Protein Cell
, vol.2
, pp. 456-462
-
-
Brooks, C.L.1
Gu, W.2
-
25
-
-
80052728974
-
p53 regulation by ubiquitin
-
25 Brooks, C.L., Gu, W., p53 regulation by ubiquitin. FEBS Lett. 585 (2011), 2803–2809.
-
(2011)
FEBS Lett.
, vol.585
, pp. 2803-2809
-
-
Brooks, C.L.1
Gu, W.2
-
26
-
-
84962336498
-
Functional diversification after gene duplication: paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73
-
26 Dos Santos, H.G., et al. Functional diversification after gene duplication: paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS ONE, 11, 2016, e0151961.
-
(2016)
PLoS ONE
, vol.11
, pp. e0151961
-
-
Dos Santos, H.G.1
-
27
-
-
0642375803
-
p73 and p63 protein stability: the way to regulate function?
-
27 Maisse, C., et al. p73 and p63 protein stability: the way to regulate function?. Biochem. Pharmacol. 66 (2003), 1555–1561.
-
(2003)
Biochem. Pharmacol.
, vol.66
, pp. 1555-1561
-
-
Maisse, C.1
-
28
-
-
78649854210
-
Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73
-
28 Zdzalik, M., et al. Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73. Cell Cycle 9 (2010), 4584–4591.
-
(2010)
Cell Cycle
, vol.9
, pp. 4584-4591
-
-
Zdzalik, M.1
-
29
-
-
77955363995
-
TP53 mutations in human cancers: origins, consequences, and clinical use
-
29 Olivier, M., et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2, 2010, a001008.
-
(2010)
Cold Spring Harb. Perspect. Biol.
, vol.2
, pp. a001008
-
-
Olivier, M.1
-
30
-
-
8644241631
-
p53 linear diffusion along DNA requires its C terminus
-
30 McKinney, K., et al. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16 (2004), 413–424.
-
(2004)
Mol. Cell
, vol.16
, pp. 413-424
-
-
McKinney, K.1
-
31
-
-
46749108829
-
Tumor suppressor p53 slides on DNA with low friction and high stability
-
31 Tafvizi, A., et al. Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 95 (2008), L01–L03.
-
(2008)
Biophys. J.
, vol.95
, pp. L01-L03
-
-
Tafvizi, A.1
-
32
-
-
79952259642
-
A single-molecule characterization of p53 search on DNA
-
32 Tafvizi, A., et al. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 563–568.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 563-568
-
-
Tafvizi, A.1
-
33
-
-
79953695332
-
Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains
-
33 Khazanov, N., Levy, Y., Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains. J. Mol. Biol. 408 (2011), 335–355.
-
(2011)
J. Mol. Biol.
, vol.408
, pp. 335-355
-
-
Khazanov, N.1
Levy, Y.2
-
34
-
-
82655179905
-
Intrinsically disordered regions as affinity tuners in protein–DNA interactions
-
34 Vuzman, D., Levy, Y., Intrinsically disordered regions as affinity tuners in protein–DNA interactions. Mol. Biosyst. 8 (2012), 47–57.
-
(2012)
Mol. Biosyst.
, vol.8
, pp. 47-57
-
-
Vuzman, D.1
Levy, Y.2
-
35
-
-
84938211900
-
2+ at millimolar concentrations
-
2+ at millimolar concentrations. J. Mol. Biol. 427 (2015), 2663–2678.
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 2663-2678
-
-
Murata, A.1
-
36
-
-
0036784608
-
Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein
-
36 McKinney, K., Prives, C., Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 22 (2002), 6797–6808.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 6797-6808
-
-
McKinney, K.1
Prives, C.2
-
37
-
-
0037174933
-
Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain
-
37 Göhler, T., et al. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J. Biol. Chem. 277 (2002), 41192–41203.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 41192-41203
-
-
Göhler, T.1
-
38
-
-
0034881964
-
Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment
-
38 Espinosa, J.M., Emerson, B.M., Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8 (2001), 57–69.
-
(2001)
Mol. Cell
, vol.8
, pp. 57-69
-
-
Espinosa, J.M.1
Emerson, B.M.2
-
39
-
-
1842538713
-
Enhancement of p53 sequence-specific binding by DNA supercoiling
-
39 Palecek, E., et al. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene 23 (2004), 2119–2127.
-
(2004)
Oncogene
, vol.23
, pp. 2119-2127
-
-
Palecek, E.1
-
40
-
-
84856071971
-
p53 requires an intact C-terminal domain for DNA binding and transactivation
-
40 Kim, H., et al. p53 requires an intact C-terminal domain for DNA binding and transactivation. J. Mol. Biol. 415 (2012), 843–854.
-
(2012)
J. Mol. Biol.
, vol.415
, pp. 843-854
-
-
Kim, H.1
-
41
-
-
84890878831
-
Supercoiling in DNA and chromatin
-
41 Gilbert, N., Allan, J., Supercoiling in DNA and chromatin. Curr. Opin. Genet. Dev. 25 (2014), 15–21.
-
(2014)
Curr. Opin. Genet. Dev.
, vol.25
, pp. 15-21
-
-
Gilbert, N.1
Allan, J.2
-
42
-
-
79961111848
-
Cruciform structures are a common DNA feature important for regulating biological processes
-
42 Brázda, V., et al. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 5 (2011), 12–33.
-
(2011)
BMC Mol. Biol.
, vol.5
, pp. 12-33
-
-
Brázda, V.1
-
43
-
-
0142026180
-
Context-dependent transcription: all politics is local
-
43 Alvarez, M., et al. Context-dependent transcription: all politics is local. Gene 313 (2003), 43–57.
-
(2003)
Gene
, vol.313
, pp. 43-57
-
-
Alvarez, M.1
-
44
-
-
84925061396
-
The p53C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain
-
44 Laptenko, O., et al. The p53C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol. Cell 57 (2015), 1034–1046.
-
(2015)
Mol. Cell
, vol.57
, pp. 1034-1046
-
-
Laptenko, O.1
-
45
-
-
78649264722
-
p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy
-
45 Lidor, N.E., et al. p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res. 20 (2010), 1361–1368.
-
(2010)
Genome Res.
, vol.20
, pp. 1361-1368
-
-
Lidor, N.E.1
-
46
-
-
84922374664
-
TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity
-
46 Sammons, M.A., et al. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity. Genome Res. 25 (2015), 179–188.
-
(2015)
Genome Res.
, vol.25
, pp. 179-188
-
-
Sammons, M.A.1
-
47
-
-
79960600521
-
p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation
-
47 Laptenko, O., et al. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 10385–10390.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10385-10390
-
-
Laptenko, O.1
-
48
-
-
84862702724
-
p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes
-
48 Hamard, P.J., et al. p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes. J. Biol. Chem. 287 (2012), 22397–22407.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 22397-22407
-
-
Hamard, P.J.1
-
49
-
-
84977839343
-
Next generation prokaryotic engineering: the CRISPR-Cas toolkit
-
49 Mougiakos, I., et al. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 34 (2016), 575–587.
-
(2016)
Trends Biotechnol.
, vol.34
, pp. 575-587
-
-
Mougiakos, I.1
-
50
-
-
84929687810
-
Choosing the right tool for the job: RNAi, TALEN, or CRISPR
-
50 Boettcher, M., McManus, M.T., Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell 58 (2015), 575–585.
-
(2015)
Mol. Cell
, vol.58
, pp. 575-585
-
-
Boettcher, M.1
McManus, M.T.2
-
51
-
-
0034869859
-
Latent and active p53 are identical in conformation
-
51 Ayed, A., et al. Latent and active p53 are identical in conformation. Nat. Struct. Biol. 8 (2001), 756–760.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 756-760
-
-
Ayed, A.1
-
52
-
-
84975717995
-
The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain
-
52 D'Abramo, M., et al. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 35 (2016), 3272–3281.
-
(2016)
Oncogene
, vol.35
, pp. 3272-3281
-
-
D'Abramo, M.1
-
53
-
-
24344448786
-
p53 isoforms can regulate p53 transcriptional activity
-
53 Bourdon, J.C., et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19 (2005), 2122–2137.
-
(2005)
Genes Dev.
, vol.19
, pp. 2122-2137
-
-
Bourdon, J.C.1
-
54
-
-
81155139688
-
Biological functions of p53 isoforms through evolution: lessons from animal and cellular models
-
54 Marcel, V., et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ. 18 (2011), 1815–1824.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1815-1824
-
-
Marcel, V.1
-
55
-
-
84905909213
-
Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response
-
55 Marcel, V., et al. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ. 21 (2014), 1377–1387.
-
(2014)
Cell Death Differ.
, vol.21
, pp. 1377-1387
-
-
Marcel, V.1
-
56
-
-
84873617846
-
null cell lines
-
null cell lines. PLoS ONE, 8, 2013, e56276.
-
(2013)
PLoS ONE
, vol.8
, pp. e56276
-
-
Silden, E.1
-
57
-
-
0027983669
-
Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations
-
57 Cho, Y., et al. Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265 (1994), 346–355.
-
(1994)
Science
, vol.265
, pp. 346-355
-
-
Cho, Y.1
-
58
-
-
0036301402
-
Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding
-
58 Rippin, T.M., et al. Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J. Mol. Biol. 319 (2002), 351–358.
-
(2002)
J. Mol. Biol.
, vol.319
, pp. 351-358
-
-
Rippin, T.M.1
-
59
-
-
33745209412
-
Structural basis of DNA recognition by p53 tetramers
-
59 Kitayner, M., et al. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22 (2006), 741–753.
-
(2006)
Mol. Cell
, vol.22
, pp. 741-753
-
-
Kitayner, M.1
-
60
-
-
33144474649
-
Solution structure of p53 core domain: structural basis for its instability
-
60 Cañadillas, J.M., et al. Solution structure of p53 core domain: structural basis for its instability. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 2109–2114.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 2109-2114
-
-
Cañadillas, J.M.1
-
61
-
-
79957894792
-
An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity
-
61 Petty, T.J., et al. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 30 (2011), 2167–2176.
-
(2011)
EMBO J.
, vol.30
, pp. 2167-2176
-
-
Petty, T.J.1
-
62
-
-
33750486164
-
The structure of p53 tumor suppressor protein reveals the basis for its functional plasticity
-
62 Okorokov, A.L., et al. The structure of p53 tumor suppressor protein reveals the basis for its functional plasticity. EMBO J. 25 (2006), 5191–5200.
-
(2006)
EMBO J.
, vol.25
, pp. 5191-5200
-
-
Okorokov, A.L.1
-
63
-
-
44449116120
-
Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain
-
63 Wells, M., et al. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 5762–5767.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 5762-5767
-
-
Wells, M.1
-
64
-
-
79551670110
-
Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA
-
64 Melero, R., et al. Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 557–562.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 557-562
-
-
Melero, R.1
-
65
-
-
84957441357
-
Visualizing the path of DNA through proteins using DREEM imaging
-
65 Wu, D., et al. Visualizing the path of DNA through proteins using DREEM imaging. Mol. Cell 61 (2016), 315–323.
-
(2016)
Mol. Cell
, vol.61
, pp. 315-323
-
-
Wu, D.1
-
66
-
-
0032541021
-
Spatial organization of transcription elongation complex in Escherichia coli
-
66 Nudler, E., et al. Spatial organization of transcription elongation complex in Escherichia coli. Science 281 (1998), 424–428.
-
(1998)
Science
, vol.281
, pp. 424-428
-
-
Nudler, E.1
-
67
-
-
84950105749
-
DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1
-
67 Parshin, A., et al. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E6862–E6871.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E6862-E6871
-
-
Parshin, A.1
-
68
-
-
84938741338
-
Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry
-
68 Arlt, C., et al. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics 15 (2015), 2746–2755.
-
(2015)
Proteomics
, vol.15
, pp. 2746-2755
-
-
Arlt, C.1
-
69
-
-
84863756423
-
Surf the post-translational modification network of p53 regulation
-
69 Gu, B., Zhu, W.G., Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8 (2012), 672–684.
-
(2012)
Int. J. Biol. Sci.
, vol.8
, pp. 672-684
-
-
Gu, B.1
Zhu, W.G.2
-
70
-
-
77955858336
-
Posttranslational modification of p53: cooperative integrators of function
-
70 Meek, D.W., Anderson, C.W., Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect. Biol., 1, 2009, a000950.
-
(2009)
Cold Spring Harb. Perspect. Biol.
, vol.1
, pp. a000950
-
-
Meek, D.W.1
Anderson, C.W.2
-
71
-
-
43949107925
-
SnapShot: p53 posttranslational modifications
-
71 Kruse, J.P., Gu, W., SnapShot: p53 posttranslational modifications. Cell, 133, 2008, 930.
-
(2008)
Cell
, vol.133
, pp. 930
-
-
Kruse, J.P.1
Gu, W.2
-
72
-
-
84891762808
-
Extensive post-translational modification of active and inactivated forms of endogenous p53
-
72 DeHart, C.J., et al. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol. Cell Proteomics 13 (2014), 1–17.
-
(2014)
Mol. Cell Proteomics
, vol.13
, pp. 1-17
-
-
DeHart, C.J.1
-
73
-
-
33845270990
-
Regulating the p53 pathway: in vitro hypotheses, in vivo veritas
-
73 Toledo, F., Wahl, G.M., Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6 (2006), 909–923.
-
(2006)
Nat. Rev. Cancer
, vol.6
, pp. 909-923
-
-
Toledo, F.1
Wahl, G.M.2
-
74
-
-
84906084536
-
Limiting the power of p53 through the ubiquitin proteasome pathway
-
74 Pant, V., Lozano, G., Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 28 (2014), 1739–1751.
-
(2014)
Genes Dev.
, vol.28
, pp. 1739-1751
-
-
Pant, V.1
Lozano, G.2
-
75
-
-
0030575937
-
Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
-
75 Kussie, P.H., et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274 (1996), 948–953.
-
(1996)
Science
, vol.274
, pp. 948-953
-
-
Kussie, P.H.1
-
76
-
-
77955418479
-
The C terminus of p53 binds the N-terminal domain of MDM2
-
76 Poyurovsky, M.V., et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nat. Struct. Mol. Biol. 17 (2010), 982–989.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 982-989
-
-
Poyurovsky, M.V.1
-
77
-
-
4744373426
-
Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389
-
77 Bruins, W., et al. Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol. Cell Biol. 24 (2004), 8884–8894.
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 8884-8894
-
-
Bruins, W.1
-
78
-
-
20744448187
-
Functional analysis of the roles of posttranslational modifications at the p53C terminus in regulating p53 stability and activity
-
78 Feng, L., et al. Functional analysis of the roles of posttranslational modifications at the p53C terminus in regulating p53 stability and activity. Mol. Cell Biol. 25 (2005), 5389–5395.
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 5389-5395
-
-
Feng, L.1
-
79
-
-
84879794532
-
Mutant mice lacking the p53 C-terminal domain model telomere syndromes
-
79 Simeonova, I., et al. Mutant mice lacking the p53 C-terminal domain model telomere syndromes. Cell Rep. 3 (2013), 2046–2058.
-
(2013)
Cell Rep.
, vol.3
, pp. 2046-2058
-
-
Simeonova, I.1
-
80
-
-
84883609298
-
The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo
-
80 Hamard, P.J., et al. The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes Dev. 27 (2013), 1868–1885.
-
(2013)
Genes Dev.
, vol.27
, pp. 1868-1885
-
-
Hamard, P.J.1
-
81
-
-
22544484456
-
The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation
-
81 Krummel, K.A., et al. The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 10188–10193.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 10188-10193
-
-
Krummel, K.A.1
-
82
-
-
36749082463
-
The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development
-
82 Liu, G., et al. The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development. J. Pathol. 213 (2007), 360–368.
-
(2007)
J. Pathol.
, vol.213
, pp. 360-368
-
-
Liu, G.1
-
83
-
-
78049499084
-
Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity
-
83 Abbas, H.A., et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7 (2010), 606–617.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 606-617
-
-
Abbas, H.A.1
-
84
-
-
0037220737
-
Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation
-
84 Mendrysa, S.M., et al. Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol. Cell Biol. 23 (2003), 462–472.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 462-472
-
-
Mendrysa, S.M.1
-
85
-
-
79960022026
-
Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity
-
85 Wang, Y.V., et al. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes Dev. 25 (2011), 1426–1438.
-
(2011)
Genes Dev.
, vol.25
, pp. 1426-1438
-
-
Wang, Y.V.1
-
86
-
-
32944458404
-
Ubiquitination of p53 at multiple sites in the DNA-binding domain
-
86 Chan, W.M., et al. Ubiquitination of p53 at multiple sites in the DNA-binding domain. Mol. Cancer Res. 4 (2006), 15–25.
-
(2006)
Mol. Cancer Res.
, vol.4
, pp. 15-25
-
-
Chan, W.M.1
-
87
-
-
77449127476
-
Ubiquitin-independent p53 proteasomal degradation
-
87 Tsvetkov, P., et al. Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ. 17 (2010), 103–108.
-
(2010)
Cell Death Differ.
, vol.17
, pp. 103-108
-
-
Tsvetkov, P.1
-
88
-
-
0030797585
-
Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
-
88 Gu, W., Roeder, R.G., Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90 (1997), 595–606.
-
(1997)
Cell
, vol.90
, pp. 595-606
-
-
Gu, W.1
Roeder, R.G.2
-
89
-
-
0030772030
-
Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation
-
89 Anderson, M.E., et al. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol. Cell Biol. 17 (1997), 6255–6264.
-
(1997)
Mol. Cell Biol.
, vol.17
, pp. 6255-6264
-
-
Anderson, M.E.1
-
90
-
-
1442330508
-
Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo
-
90 Luo, J., et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 2259–2264.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 2259-2264
-
-
Luo, J.1
-
91
-
-
84883474258
-
Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells
-
91 Menendez, D., et al. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res. 41 (2013), 7286–7301.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7286-7301
-
-
Menendez, D.1
-
92
-
-
0035868964
-
p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2
-
92 Ito, A., et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20 (2001), 1331–1340.
-
(2001)
EMBO J.
, vol.20
, pp. 1331-1340
-
-
Ito, A.1
-
93
-
-
11144224782
-
Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis
-
93 Thompson, T., et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J. Biol Chem. 279 (2004), 53015–53022.
-
(2004)
J. Biol Chem.
, vol.279
, pp. 53015-53022
-
-
Thompson, T.1
-
94
-
-
33344463911
-
On the mechanism of sequence-specific DNA- dependent acetylation of p53: the acetylation motif is exposed upon DNA binding
-
94 Cesková, P., et al. On the mechanism of sequence-specific DNA- dependent acetylation of p53: the acetylation motif is exposed upon DNA binding. J. Mol. Biol. 357 (2006), 442–456.
-
(2006)
J. Mol. Biol.
, vol.357
, pp. 442-456
-
-
Cesková, P.1
-
95
-
-
77950361185
-
Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms
-
95 Rajagopalan, S., et al. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 38 (2010), 893–906.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 893-906
-
-
Rajagopalan, S.1
-
96
-
-
70449685710
-
Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53
-
96 van Dieck, J., et al. Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53. J. Mol. Biol. 394 (2009), 922–930.
-
(2009)
J. Mol. Biol.
, vol.394
, pp. 922-930
-
-
van Dieck, J.1
-
97
-
-
2942612843
-
Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53
-
97 An, W., et al. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117 (2004), 735–748.
-
(2004)
Cell
, vol.117
, pp. 735-748
-
-
An, W.1
-
98
-
-
84876855540
-
Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting
-
98 Wu, S.Y., et al. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol. Cell 49 (2013), 843–857.
-
(2013)
Mol. Cell
, vol.49
, pp. 843-857
-
-
Wu, S.Y.1
-
99
-
-
84892374224
-
Phosphorylation of p53 by TAF1 inactivates p53- dependent transcription in the DNA damage response
-
99 Wu, Y., et al. Phosphorylation of p53 by TAF1 inactivates p53- dependent transcription in the DNA damage response. Mol. Cell 53 (2014), 63–74.
-
(2014)
Mol. Cell
, vol.53
, pp. 63-74
-
-
Wu, Y.1
-
100
-
-
84901409283
-
Transcription factors: specific DNA binding and specific gene regulation
-
100 Todeschini, A.L., et al. Transcription factors: specific DNA binding and specific gene regulation. Trends Genet. 30 (2014), 211–219.
-
(2014)
Trends Genet.
, vol.30
, pp. 211-219
-
-
Todeschini, A.L.1
-
101
-
-
84875198920
-
Transcriptional regulation and its misregulation in disease
-
101 Lee, T.I., Young, R.A., Transcriptional regulation and its misregulation in disease. Cell 152 (2013), 1237–1251.
-
(2013)
Cell
, vol.152
, pp. 1237-1251
-
-
Lee, T.I.1
Young, R.A.2
-
102
-
-
0034570889
-
Intrinsic protein disorder in complete genomes
-
102 Dunker, A.K., et al. Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11 (2000), 161–171.
-
(2000)
Genome Inform. Ser. Workshop Genome Inform.
, vol.11
, pp. 161-171
-
-
Dunker, A.K.1
-
103
-
-
33744961763
-
Intrinsic disorder in transcription factors
-
103 Liu, J., et al. Intrinsic disorder in transcription factors. Biochemistry 45 (2006), 6873–6888.
-
(2006)
Biochemistry
, vol.45
, pp. 6873-6888
-
-
Liu, J.1
-
104
-
-
34547943482
-
Molecular principles of the interactions of disordered proteins
-
104 Mészáros, B., et al. Molecular principles of the interactions of disordered proteins. J. Mol. Biol. 372 (2007), 549–561.
-
(2007)
J. Mol. Biol.
, vol.372
, pp. 549-561
-
-
Mészáros, B.1
-
105
-
-
34250815165
-
Characterization of molecular recognition features, MoRFs, and their binding partners
-
105 Vacic, V., et al. Characterization of molecular recognition features, MoRFs, and their binding partners. J. Proteome Res. 6 (2007), 2351–2366.
-
(2007)
J. Proteome Res.
, vol.6
, pp. 2351-2366
-
-
Vacic, V.1
|