메뉴 건너뛰기




Volumn 41, Issue 12, 2016, Pages 1022-1034

The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein

Author keywords

[No Author keywords available]

Indexed keywords

ISOPROTEIN; PROTEIN P53; PROTEIN P63; TRANSCRIPTION FACTOR; TUMOR PROTEIN P73; DNA; INTRINSICALLY DISORDERED PROTEIN; PROTEIN BINDING;

EID: 84995740171     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.08.011     Document Type: Review
Times cited : (60)

References (105)
  • 1
    • 77955827519 scopus 로고    scopus 로고
    • The origins and evolution of the p53 family of genes
    • 1 Belyi, V.A., et al. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol, 2, 2010, a001198.
    • (2010) Cold Spring Harb. Perspect. Biol , vol.2 , pp. a001198
    • Belyi, V.A.1
  • 2
    • 42449114966 scopus 로고    scopus 로고
    • Transcriptional control of human p53-regulated genes
    • 2 Riley, T., et al. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell. Biol. 9 (2008), 402–412.
    • (2008) Nat. Rev. Mol. Cell. Biol. , vol.9 , pp. 402-412
    • Riley, T.1
  • 3
    • 33646807491 scopus 로고    scopus 로고
    • Transcriptional regulation by p53: one protein, many possibilities
    • 3 Laptenko, O., Prives, C., Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13 (2006), 951–961.
    • (2006) Cell Death Differ. , vol.13 , pp. 951-961
    • Laptenko, O.1    Prives, C.2
  • 4
    • 0030941458 scopus 로고    scopus 로고
    • p53, the cellular gatekeeper for growth and division
    • 4 Levine, A.J., p53, the cellular gatekeeper for growth and division. Cell 88 (1997), 323–331.
    • (1997) Cell , vol.88 , pp. 323-331
    • Levine, A.J.1
  • 5
    • 65349103899 scopus 로고    scopus 로고
    • Blinded by the light: the growing complexity of p53
    • 5 Vousden, K.H., Prives, C., Blinded by the light: the growing complexity of p53. Cell 137 (2009), 413–431.
    • (2009) Cell , vol.137 , pp. 413-431
    • Vousden, K.H.1    Prives, C.2
  • 6
    • 0034507632 scopus 로고    scopus 로고
    • Transcription of eukaryotic protein-coding genes
    • 6 Lee, T.I., Young, R.A., Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34 (2000), 77–137.
    • (2000) Annu. Rev. Genet. , vol.34 , pp. 77-137
    • Lee, T.I.1    Young, R.A.2
  • 7
    • 85006561817 scopus 로고    scopus 로고
    • Genes & Signals
    • Cold Spring Harbor Laboratory
    • 7 Ptashne, M., Gann, A., Genes & Signals. 2001, Cold Spring Harbor Laboratory.
    • (2001)
    • Ptashne, M.1    Gann, A.2
  • 9
    • 47649096991 scopus 로고    scopus 로고
    • Structural biology of the tumor suppressor p53
    • 9 Joerger, A.C., Fersht, A.R., Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77 (2008), 557–582.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 557-582
    • Joerger, A.C.1    Fersht, A.R.2
  • 10
    • 0026018256 scopus 로고
    • A DNA binding domain is contained in the C-terminus of wild type p53 protein
    • 10 Foord, O.S., et al. A DNA binding domain is contained in the C-terminus of wild type p53 protein. Nucleic Acids Res. 19 (1991), 5191–5198.
    • (1991) Nucleic Acids Res. , vol.19 , pp. 5191-5198
    • Foord, O.S.1
  • 11
    • 0026669469 scopus 로고
    • p53 function and dysfunction
    • 11 Vogelstein, B., Kinzler, K.W., p53 function and dysfunction. Cell 70 (1992), 523–526.
    • (1992) Cell , vol.70 , pp. 523-526
    • Vogelstein, B.1    Kinzler, K.W.2
  • 12
    • 0034862475 scopus 로고    scopus 로고
    • The C-terminus of p53: the more you learn the less you know
    • 12 Ahn, J., Prives, C., The C-terminus of p53: the more you learn the less you know. Nat. Struct. Biol. 8 (2001), 730–732.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 730-732
    • Ahn, J.1    Prives, C.2
  • 13
    • 0036415663 scopus 로고    scopus 로고
    • p53 contains large unstructured regions in its native state
    • 13 Bell, S., et al. p53 contains large unstructured regions in its native state. J. Mol. Biol. 322 (2002), 917–927.
    • (2002) J. Mol. Biol. , vol.322 , pp. 917-927
    • Bell, S.1
  • 14
    • 36749037699 scopus 로고    scopus 로고
    • Mining alpha-helix-forming molecular recognition features with cross species sequence alignments
    • 14 Cheng, Y., et al. Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46 (2007), 13468–13477.
    • (2007) Biochemistry , vol.46 , pp. 13468-13477
    • Cheng, Y.1
  • 15
    • 17044391806 scopus 로고    scopus 로고
    • Modulation of binding of DNA to the C-terminal domain of p53 by acetylation
    • 15 Friedler, A., et al. Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure 13 (2005), 629–636.
    • (2005) Structure , vol.13 , pp. 629-636
    • Friedler, A.1
  • 16
    • 84874071407 scopus 로고    scopus 로고
    • Intrinsically disordered regions of p53 family are highly diversified in evolution
    • 16 Xue, B., et al. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta 1834 (2013), 725–738.
    • (2013) Biochim. Biophys. Acta , vol.1834 , pp. 725-738
    • Xue, B.1
  • 17
    • 84942155810 scopus 로고    scopus 로고
    • Intrinsically disordered proteins: emerging interaction specialists
    • 17 Tompa, P., et al. Intrinsically disordered proteins: emerging interaction specialists. Curr. Opin. Struct. Biol. 35 (2015), 49–59.
    • (2015) Curr. Opin. Struct. Biol. , vol.35 , pp. 49-59
    • Tompa, P.1
  • 18
    • 79958029735 scopus 로고    scopus 로고
    • Evolution and disorder
    • 18 Brown, C.J., et al. Evolution and disorder. Curr. Opin. Struct. Biol. 21 (2011), 441–446.
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 441-446
    • Brown, C.J.1
  • 19
    • 0033945124 scopus 로고    scopus 로고
    • Structure of the negative regulatory domain of p53 bound to S100B(betabeta)
    • 19 Rustandi, R.R., et al. Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat. Struct. Biol. 7 (2000), 570–574.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 570-574
    • Rustandi, R.R.1
  • 20
    • 10744233648 scopus 로고    scopus 로고
    • Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation
    • 20 Mujtaba, S., et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell. 13 (2004), 251–263.
    • (2004) Mol. Cell. , vol.13 , pp. 251-263
    • Mujtaba, S.1
  • 21
    • 84930189683 scopus 로고    scopus 로고
    • Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1
    • 21 Tong, Q., et al. Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1. Structure 23 (2015), 312–321.
    • (2015) Structure , vol.23 , pp. 312-321
    • Tong, Q.1
  • 22
    • 84930189594 scopus 로고    scopus 로고
    • An acetyl–methyl switch drives a conformational change in p53
    • 322-231
    • 22 Tong, Q., et al. An acetyl–methyl switch drives a conformational change in p53. Structure, 23, 2015 322-231.
    • (2015) Structure , vol.23
    • Tong, Q.1
  • 23
    • 70450235184 scopus 로고    scopus 로고
    • Regulation of p53 – insights into a complex process
    • 23 Boehme, K.A., Blattner, C., Regulation of p53 – insights into a complex process. Crit. Rev. Biochem. Mol. Biol. 44 (2009), 367–392.
    • (2009) Crit. Rev. Biochem. Mol. Biol. , vol.44 , pp. 367-392
    • Boehme, K.A.1    Blattner, C.2
  • 24
    • 80053064491 scopus 로고    scopus 로고
    • The impact of acetylation and deacetylation on the p53 pathway
    • 24 Brooks, C.L., Gu, W., The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2 (2011), 456–462.
    • (2011) Protein Cell , vol.2 , pp. 456-462
    • Brooks, C.L.1    Gu, W.2
  • 25
    • 80052728974 scopus 로고    scopus 로고
    • p53 regulation by ubiquitin
    • 25 Brooks, C.L., Gu, W., p53 regulation by ubiquitin. FEBS Lett. 585 (2011), 2803–2809.
    • (2011) FEBS Lett. , vol.585 , pp. 2803-2809
    • Brooks, C.L.1    Gu, W.2
  • 26
    • 84962336498 scopus 로고    scopus 로고
    • Functional diversification after gene duplication: paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73
    • 26 Dos Santos, H.G., et al. Functional diversification after gene duplication: paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS ONE, 11, 2016, e0151961.
    • (2016) PLoS ONE , vol.11 , pp. e0151961
    • Dos Santos, H.G.1
  • 27
    • 0642375803 scopus 로고    scopus 로고
    • p73 and p63 protein stability: the way to regulate function?
    • 27 Maisse, C., et al. p73 and p63 protein stability: the way to regulate function?. Biochem. Pharmacol. 66 (2003), 1555–1561.
    • (2003) Biochem. Pharmacol. , vol.66 , pp. 1555-1561
    • Maisse, C.1
  • 28
    • 78649854210 scopus 로고    scopus 로고
    • Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73
    • 28 Zdzalik, M., et al. Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73. Cell Cycle 9 (2010), 4584–4591.
    • (2010) Cell Cycle , vol.9 , pp. 4584-4591
    • Zdzalik, M.1
  • 29
    • 77955363995 scopus 로고    scopus 로고
    • TP53 mutations in human cancers: origins, consequences, and clinical use
    • 29 Olivier, M., et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2, 2010, a001008.
    • (2010) Cold Spring Harb. Perspect. Biol. , vol.2 , pp. a001008
    • Olivier, M.1
  • 30
    • 8644241631 scopus 로고    scopus 로고
    • p53 linear diffusion along DNA requires its C terminus
    • 30 McKinney, K., et al. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16 (2004), 413–424.
    • (2004) Mol. Cell , vol.16 , pp. 413-424
    • McKinney, K.1
  • 31
    • 46749108829 scopus 로고    scopus 로고
    • Tumor suppressor p53 slides on DNA with low friction and high stability
    • 31 Tafvizi, A., et al. Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 95 (2008), L01–L03.
    • (2008) Biophys. J. , vol.95 , pp. L01-L03
    • Tafvizi, A.1
  • 32
    • 79952259642 scopus 로고    scopus 로고
    • A single-molecule characterization of p53 search on DNA
    • 32 Tafvizi, A., et al. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 563–568.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 563-568
    • Tafvizi, A.1
  • 33
    • 79953695332 scopus 로고    scopus 로고
    • Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains
    • 33 Khazanov, N., Levy, Y., Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains. J. Mol. Biol. 408 (2011), 335–355.
    • (2011) J. Mol. Biol. , vol.408 , pp. 335-355
    • Khazanov, N.1    Levy, Y.2
  • 34
    • 82655179905 scopus 로고    scopus 로고
    • Intrinsically disordered regions as affinity tuners in protein–DNA interactions
    • 34 Vuzman, D., Levy, Y., Intrinsically disordered regions as affinity tuners in protein–DNA interactions. Mol. Biosyst. 8 (2012), 47–57.
    • (2012) Mol. Biosyst. , vol.8 , pp. 47-57
    • Vuzman, D.1    Levy, Y.2
  • 35
    • 84938211900 scopus 로고    scopus 로고
    • 2+ at millimolar concentrations
    • 2+ at millimolar concentrations. J. Mol. Biol. 427 (2015), 2663–2678.
    • (2015) J. Mol. Biol. , vol.427 , pp. 2663-2678
    • Murata, A.1
  • 36
    • 0036784608 scopus 로고    scopus 로고
    • Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein
    • 36 McKinney, K., Prives, C., Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 22 (2002), 6797–6808.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 6797-6808
    • McKinney, K.1    Prives, C.2
  • 37
    • 0037174933 scopus 로고    scopus 로고
    • Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain
    • 37 Göhler, T., et al. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J. Biol. Chem. 277 (2002), 41192–41203.
    • (2002) J. Biol. Chem. , vol.277 , pp. 41192-41203
    • Göhler, T.1
  • 38
    • 0034881964 scopus 로고    scopus 로고
    • Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment
    • 38 Espinosa, J.M., Emerson, B.M., Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8 (2001), 57–69.
    • (2001) Mol. Cell , vol.8 , pp. 57-69
    • Espinosa, J.M.1    Emerson, B.M.2
  • 39
    • 1842538713 scopus 로고    scopus 로고
    • Enhancement of p53 sequence-specific binding by DNA supercoiling
    • 39 Palecek, E., et al. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene 23 (2004), 2119–2127.
    • (2004) Oncogene , vol.23 , pp. 2119-2127
    • Palecek, E.1
  • 40
    • 84856071971 scopus 로고    scopus 로고
    • p53 requires an intact C-terminal domain for DNA binding and transactivation
    • 40 Kim, H., et al. p53 requires an intact C-terminal domain for DNA binding and transactivation. J. Mol. Biol. 415 (2012), 843–854.
    • (2012) J. Mol. Biol. , vol.415 , pp. 843-854
    • Kim, H.1
  • 41
    • 84890878831 scopus 로고    scopus 로고
    • Supercoiling in DNA and chromatin
    • 41 Gilbert, N., Allan, J., Supercoiling in DNA and chromatin. Curr. Opin. Genet. Dev. 25 (2014), 15–21.
    • (2014) Curr. Opin. Genet. Dev. , vol.25 , pp. 15-21
    • Gilbert, N.1    Allan, J.2
  • 42
    • 79961111848 scopus 로고    scopus 로고
    • Cruciform structures are a common DNA feature important for regulating biological processes
    • 42 Brázda, V., et al. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 5 (2011), 12–33.
    • (2011) BMC Mol. Biol. , vol.5 , pp. 12-33
    • Brázda, V.1
  • 43
    • 0142026180 scopus 로고    scopus 로고
    • Context-dependent transcription: all politics is local
    • 43 Alvarez, M., et al. Context-dependent transcription: all politics is local. Gene 313 (2003), 43–57.
    • (2003) Gene , vol.313 , pp. 43-57
    • Alvarez, M.1
  • 44
    • 84925061396 scopus 로고    scopus 로고
    • The p53C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain
    • 44 Laptenko, O., et al. The p53C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol. Cell 57 (2015), 1034–1046.
    • (2015) Mol. Cell , vol.57 , pp. 1034-1046
    • Laptenko, O.1
  • 45
    • 78649264722 scopus 로고    scopus 로고
    • p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy
    • 45 Lidor, N.E., et al. p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res. 20 (2010), 1361–1368.
    • (2010) Genome Res. , vol.20 , pp. 1361-1368
    • Lidor, N.E.1
  • 46
    • 84922374664 scopus 로고    scopus 로고
    • TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity
    • 46 Sammons, M.A., et al. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity. Genome Res. 25 (2015), 179–188.
    • (2015) Genome Res. , vol.25 , pp. 179-188
    • Sammons, M.A.1
  • 47
    • 79960600521 scopus 로고    scopus 로고
    • p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation
    • 47 Laptenko, O., et al. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 10385–10390.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 10385-10390
    • Laptenko, O.1
  • 48
    • 84862702724 scopus 로고    scopus 로고
    • p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes
    • 48 Hamard, P.J., et al. p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes. J. Biol. Chem. 287 (2012), 22397–22407.
    • (2012) J. Biol. Chem. , vol.287 , pp. 22397-22407
    • Hamard, P.J.1
  • 49
    • 84977839343 scopus 로고    scopus 로고
    • Next generation prokaryotic engineering: the CRISPR-Cas toolkit
    • 49 Mougiakos, I., et al. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol. 34 (2016), 575–587.
    • (2016) Trends Biotechnol. , vol.34 , pp. 575-587
    • Mougiakos, I.1
  • 50
    • 84929687810 scopus 로고    scopus 로고
    • Choosing the right tool for the job: RNAi, TALEN, or CRISPR
    • 50 Boettcher, M., McManus, M.T., Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell 58 (2015), 575–585.
    • (2015) Mol. Cell , vol.58 , pp. 575-585
    • Boettcher, M.1    McManus, M.T.2
  • 51
    • 0034869859 scopus 로고    scopus 로고
    • Latent and active p53 are identical in conformation
    • 51 Ayed, A., et al. Latent and active p53 are identical in conformation. Nat. Struct. Biol. 8 (2001), 756–760.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 756-760
    • Ayed, A.1
  • 52
    • 84975717995 scopus 로고    scopus 로고
    • The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain
    • 52 D'Abramo, M., et al. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 35 (2016), 3272–3281.
    • (2016) Oncogene , vol.35 , pp. 3272-3281
    • D'Abramo, M.1
  • 53
    • 24344448786 scopus 로고    scopus 로고
    • p53 isoforms can regulate p53 transcriptional activity
    • 53 Bourdon, J.C., et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19 (2005), 2122–2137.
    • (2005) Genes Dev. , vol.19 , pp. 2122-2137
    • Bourdon, J.C.1
  • 54
    • 81155139688 scopus 로고    scopus 로고
    • Biological functions of p53 isoforms through evolution: lessons from animal and cellular models
    • 54 Marcel, V., et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ. 18 (2011), 1815–1824.
    • (2011) Cell Death Differ. , vol.18 , pp. 1815-1824
    • Marcel, V.1
  • 55
    • 84905909213 scopus 로고    scopus 로고
    • Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response
    • 55 Marcel, V., et al. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response. Cell Death Differ. 21 (2014), 1377–1387.
    • (2014) Cell Death Differ. , vol.21 , pp. 1377-1387
    • Marcel, V.1
  • 56
    • 84873617846 scopus 로고    scopus 로고
    • null cell lines
    • null cell lines. PLoS ONE, 8, 2013, e56276.
    • (2013) PLoS ONE , vol.8 , pp. e56276
    • Silden, E.1
  • 57
    • 0027983669 scopus 로고
    • Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations
    • 57 Cho, Y., et al. Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265 (1994), 346–355.
    • (1994) Science , vol.265 , pp. 346-355
    • Cho, Y.1
  • 58
    • 0036301402 scopus 로고    scopus 로고
    • Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding
    • 58 Rippin, T.M., et al. Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J. Mol. Biol. 319 (2002), 351–358.
    • (2002) J. Mol. Biol. , vol.319 , pp. 351-358
    • Rippin, T.M.1
  • 59
    • 33745209412 scopus 로고    scopus 로고
    • Structural basis of DNA recognition by p53 tetramers
    • 59 Kitayner, M., et al. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22 (2006), 741–753.
    • (2006) Mol. Cell , vol.22 , pp. 741-753
    • Kitayner, M.1
  • 60
    • 33144474649 scopus 로고    scopus 로고
    • Solution structure of p53 core domain: structural basis for its instability
    • 60 Cañadillas, J.M., et al. Solution structure of p53 core domain: structural basis for its instability. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 2109–2114.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 2109-2114
    • Cañadillas, J.M.1
  • 61
    • 79957894792 scopus 로고    scopus 로고
    • An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity
    • 61 Petty, T.J., et al. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 30 (2011), 2167–2176.
    • (2011) EMBO J. , vol.30 , pp. 2167-2176
    • Petty, T.J.1
  • 62
    • 33750486164 scopus 로고    scopus 로고
    • The structure of p53 tumor suppressor protein reveals the basis for its functional plasticity
    • 62 Okorokov, A.L., et al. The structure of p53 tumor suppressor protein reveals the basis for its functional plasticity. EMBO J. 25 (2006), 5191–5200.
    • (2006) EMBO J. , vol.25 , pp. 5191-5200
    • Okorokov, A.L.1
  • 63
    • 44449116120 scopus 로고    scopus 로고
    • Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain
    • 63 Wells, M., et al. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 5762–5767.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 5762-5767
    • Wells, M.1
  • 64
    • 79551670110 scopus 로고    scopus 로고
    • Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA
    • 64 Melero, R., et al. Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 557–562.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 557-562
    • Melero, R.1
  • 65
    • 84957441357 scopus 로고    scopus 로고
    • Visualizing the path of DNA through proteins using DREEM imaging
    • 65 Wu, D., et al. Visualizing the path of DNA through proteins using DREEM imaging. Mol. Cell 61 (2016), 315–323.
    • (2016) Mol. Cell , vol.61 , pp. 315-323
    • Wu, D.1
  • 66
    • 0032541021 scopus 로고    scopus 로고
    • Spatial organization of transcription elongation complex in Escherichia coli
    • 66 Nudler, E., et al. Spatial organization of transcription elongation complex in Escherichia coli. Science 281 (1998), 424–428.
    • (1998) Science , vol.281 , pp. 424-428
    • Nudler, E.1
  • 67
    • 84950105749 scopus 로고    scopus 로고
    • DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1
    • 67 Parshin, A., et al. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E6862–E6871.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E6862-E6871
    • Parshin, A.1
  • 68
    • 84938741338 scopus 로고    scopus 로고
    • Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry
    • 68 Arlt, C., et al. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics 15 (2015), 2746–2755.
    • (2015) Proteomics , vol.15 , pp. 2746-2755
    • Arlt, C.1
  • 69
    • 84863756423 scopus 로고    scopus 로고
    • Surf the post-translational modification network of p53 regulation
    • 69 Gu, B., Zhu, W.G., Surf the post-translational modification network of p53 regulation. Int. J. Biol. Sci. 8 (2012), 672–684.
    • (2012) Int. J. Biol. Sci. , vol.8 , pp. 672-684
    • Gu, B.1    Zhu, W.G.2
  • 70
    • 77955858336 scopus 로고    scopus 로고
    • Posttranslational modification of p53: cooperative integrators of function
    • 70 Meek, D.W., Anderson, C.W., Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect. Biol., 1, 2009, a000950.
    • (2009) Cold Spring Harb. Perspect. Biol. , vol.1 , pp. a000950
    • Meek, D.W.1    Anderson, C.W.2
  • 71
    • 43949107925 scopus 로고    scopus 로고
    • SnapShot: p53 posttranslational modifications
    • 71 Kruse, J.P., Gu, W., SnapShot: p53 posttranslational modifications. Cell, 133, 2008, 930.
    • (2008) Cell , vol.133 , pp. 930
    • Kruse, J.P.1    Gu, W.2
  • 72
    • 84891762808 scopus 로고    scopus 로고
    • Extensive post-translational modification of active and inactivated forms of endogenous p53
    • 72 DeHart, C.J., et al. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol. Cell Proteomics 13 (2014), 1–17.
    • (2014) Mol. Cell Proteomics , vol.13 , pp. 1-17
    • DeHart, C.J.1
  • 73
    • 33845270990 scopus 로고    scopus 로고
    • Regulating the p53 pathway: in vitro hypotheses, in vivo veritas
    • 73 Toledo, F., Wahl, G.M., Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6 (2006), 909–923.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 909-923
    • Toledo, F.1    Wahl, G.M.2
  • 74
    • 84906084536 scopus 로고    scopus 로고
    • Limiting the power of p53 through the ubiquitin proteasome pathway
    • 74 Pant, V., Lozano, G., Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 28 (2014), 1739–1751.
    • (2014) Genes Dev. , vol.28 , pp. 1739-1751
    • Pant, V.1    Lozano, G.2
  • 75
    • 0030575937 scopus 로고    scopus 로고
    • Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
    • 75 Kussie, P.H., et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274 (1996), 948–953.
    • (1996) Science , vol.274 , pp. 948-953
    • Kussie, P.H.1
  • 76
    • 77955418479 scopus 로고    scopus 로고
    • The C terminus of p53 binds the N-terminal domain of MDM2
    • 76 Poyurovsky, M.V., et al. The C terminus of p53 binds the N-terminal domain of MDM2. Nat. Struct. Mol. Biol. 17 (2010), 982–989.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 982-989
    • Poyurovsky, M.V.1
  • 77
    • 4744373426 scopus 로고    scopus 로고
    • Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389
    • 77 Bruins, W., et al. Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol. Cell Biol. 24 (2004), 8884–8894.
    • (2004) Mol. Cell Biol. , vol.24 , pp. 8884-8894
    • Bruins, W.1
  • 78
    • 20744448187 scopus 로고    scopus 로고
    • Functional analysis of the roles of posttranslational modifications at the p53C terminus in regulating p53 stability and activity
    • 78 Feng, L., et al. Functional analysis of the roles of posttranslational modifications at the p53C terminus in regulating p53 stability and activity. Mol. Cell Biol. 25 (2005), 5389–5395.
    • (2005) Mol. Cell Biol. , vol.25 , pp. 5389-5395
    • Feng, L.1
  • 79
    • 84879794532 scopus 로고    scopus 로고
    • Mutant mice lacking the p53 C-terminal domain model telomere syndromes
    • 79 Simeonova, I., et al. Mutant mice lacking the p53 C-terminal domain model telomere syndromes. Cell Rep. 3 (2013), 2046–2058.
    • (2013) Cell Rep. , vol.3 , pp. 2046-2058
    • Simeonova, I.1
  • 80
    • 84883609298 scopus 로고    scopus 로고
    • The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo
    • 80 Hamard, P.J., et al. The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes Dev. 27 (2013), 1868–1885.
    • (2013) Genes Dev. , vol.27 , pp. 1868-1885
    • Hamard, P.J.1
  • 81
    • 22544484456 scopus 로고    scopus 로고
    • The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation
    • 81 Krummel, K.A., et al. The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 10188–10193.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 10188-10193
    • Krummel, K.A.1
  • 82
    • 36749082463 scopus 로고    scopus 로고
    • The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development
    • 82 Liu, G., et al. The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development. J. Pathol. 213 (2007), 360–368.
    • (2007) J. Pathol. , vol.213 , pp. 360-368
    • Liu, G.1
  • 83
    • 78049499084 scopus 로고    scopus 로고
    • Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity
    • 83 Abbas, H.A., et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7 (2010), 606–617.
    • (2010) Cell Stem Cell , vol.7 , pp. 606-617
    • Abbas, H.A.1
  • 84
    • 0037220737 scopus 로고    scopus 로고
    • Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation
    • 84 Mendrysa, S.M., et al. Mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol. Cell Biol. 23 (2003), 462–472.
    • (2003) Mol. Cell Biol. , vol.23 , pp. 462-472
    • Mendrysa, S.M.1
  • 85
    • 79960022026 scopus 로고    scopus 로고
    • Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity
    • 85 Wang, Y.V., et al. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes Dev. 25 (2011), 1426–1438.
    • (2011) Genes Dev. , vol.25 , pp. 1426-1438
    • Wang, Y.V.1
  • 86
    • 32944458404 scopus 로고    scopus 로고
    • Ubiquitination of p53 at multiple sites in the DNA-binding domain
    • 86 Chan, W.M., et al. Ubiquitination of p53 at multiple sites in the DNA-binding domain. Mol. Cancer Res. 4 (2006), 15–25.
    • (2006) Mol. Cancer Res. , vol.4 , pp. 15-25
    • Chan, W.M.1
  • 87
    • 77449127476 scopus 로고    scopus 로고
    • Ubiquitin-independent p53 proteasomal degradation
    • 87 Tsvetkov, P., et al. Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ. 17 (2010), 103–108.
    • (2010) Cell Death Differ. , vol.17 , pp. 103-108
    • Tsvetkov, P.1
  • 88
    • 0030797585 scopus 로고    scopus 로고
    • Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
    • 88 Gu, W., Roeder, R.G., Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90 (1997), 595–606.
    • (1997) Cell , vol.90 , pp. 595-606
    • Gu, W.1    Roeder, R.G.2
  • 89
    • 0030772030 scopus 로고    scopus 로고
    • Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation
    • 89 Anderson, M.E., et al. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol. Cell Biol. 17 (1997), 6255–6264.
    • (1997) Mol. Cell Biol. , vol.17 , pp. 6255-6264
    • Anderson, M.E.1
  • 90
    • 1442330508 scopus 로고    scopus 로고
    • Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo
    • 90 Luo, J., et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 2259–2264.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 2259-2264
    • Luo, J.1
  • 91
    • 84883474258 scopus 로고    scopus 로고
    • Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells
    • 91 Menendez, D., et al. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res. 41 (2013), 7286–7301.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7286-7301
    • Menendez, D.1
  • 92
    • 0035868964 scopus 로고    scopus 로고
    • p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2
    • 92 Ito, A., et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20 (2001), 1331–1340.
    • (2001) EMBO J. , vol.20 , pp. 1331-1340
    • Ito, A.1
  • 93
    • 11144224782 scopus 로고    scopus 로고
    • Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis
    • 93 Thompson, T., et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J. Biol Chem. 279 (2004), 53015–53022.
    • (2004) J. Biol Chem. , vol.279 , pp. 53015-53022
    • Thompson, T.1
  • 94
    • 33344463911 scopus 로고    scopus 로고
    • On the mechanism of sequence-specific DNA- dependent acetylation of p53: the acetylation motif is exposed upon DNA binding
    • 94 Cesková, P., et al. On the mechanism of sequence-specific DNA- dependent acetylation of p53: the acetylation motif is exposed upon DNA binding. J. Mol. Biol. 357 (2006), 442–456.
    • (2006) J. Mol. Biol. , vol.357 , pp. 442-456
    • Cesková, P.1
  • 95
    • 77950361185 scopus 로고    scopus 로고
    • Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms
    • 95 Rajagopalan, S., et al. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 38 (2010), 893–906.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 893-906
    • Rajagopalan, S.1
  • 96
    • 70449685710 scopus 로고    scopus 로고
    • Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53
    • 96 van Dieck, J., et al. Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53. J. Mol. Biol. 394 (2009), 922–930.
    • (2009) J. Mol. Biol. , vol.394 , pp. 922-930
    • van Dieck, J.1
  • 97
    • 2942612843 scopus 로고    scopus 로고
    • Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53
    • 97 An, W., et al. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117 (2004), 735–748.
    • (2004) Cell , vol.117 , pp. 735-748
    • An, W.1
  • 98
    • 84876855540 scopus 로고    scopus 로고
    • Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting
    • 98 Wu, S.Y., et al. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol. Cell 49 (2013), 843–857.
    • (2013) Mol. Cell , vol.49 , pp. 843-857
    • Wu, S.Y.1
  • 99
    • 84892374224 scopus 로고    scopus 로고
    • Phosphorylation of p53 by TAF1 inactivates p53- dependent transcription in the DNA damage response
    • 99 Wu, Y., et al. Phosphorylation of p53 by TAF1 inactivates p53- dependent transcription in the DNA damage response. Mol. Cell 53 (2014), 63–74.
    • (2014) Mol. Cell , vol.53 , pp. 63-74
    • Wu, Y.1
  • 100
    • 84901409283 scopus 로고    scopus 로고
    • Transcription factors: specific DNA binding and specific gene regulation
    • 100 Todeschini, A.L., et al. Transcription factors: specific DNA binding and specific gene regulation. Trends Genet. 30 (2014), 211–219.
    • (2014) Trends Genet. , vol.30 , pp. 211-219
    • Todeschini, A.L.1
  • 101
    • 84875198920 scopus 로고    scopus 로고
    • Transcriptional regulation and its misregulation in disease
    • 101 Lee, T.I., Young, R.A., Transcriptional regulation and its misregulation in disease. Cell 152 (2013), 1237–1251.
    • (2013) Cell , vol.152 , pp. 1237-1251
    • Lee, T.I.1    Young, R.A.2
  • 102
    • 0034570889 scopus 로고    scopus 로고
    • Intrinsic protein disorder in complete genomes
    • 102 Dunker, A.K., et al. Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11 (2000), 161–171.
    • (2000) Genome Inform. Ser. Workshop Genome Inform. , vol.11 , pp. 161-171
    • Dunker, A.K.1
  • 103
    • 33744961763 scopus 로고    scopus 로고
    • Intrinsic disorder in transcription factors
    • 103 Liu, J., et al. Intrinsic disorder in transcription factors. Biochemistry 45 (2006), 6873–6888.
    • (2006) Biochemistry , vol.45 , pp. 6873-6888
    • Liu, J.1
  • 104
    • 34547943482 scopus 로고    scopus 로고
    • Molecular principles of the interactions of disordered proteins
    • 104 Mészáros, B., et al. Molecular principles of the interactions of disordered proteins. J. Mol. Biol. 372 (2007), 549–561.
    • (2007) J. Mol. Biol. , vol.372 , pp. 549-561
    • Mészáros, B.1
  • 105
    • 34250815165 scopus 로고    scopus 로고
    • Characterization of molecular recognition features, MoRFs, and their binding partners
    • 105 Vacic, V., et al. Characterization of molecular recognition features, MoRFs, and their binding partners. J. Proteome Res. 6 (2007), 2351–2366.
    • (2007) J. Proteome Res. , vol.6 , pp. 2351-2366
    • Vacic, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.