-
1
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32, 1627–1645 (2010)
-
(2010)
PAMI
, vol.32
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
2
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using conv nets
-
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using conv nets. In: ICLR (2014)
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
Lecun, Y.6
-
3
-
-
84962336509
-
-
arXiv:1412.1441
-
Szegedy, C., Reed, S., Erhan, D., Anguelov, D.: Scalable, high-quality object detection. arXiv:1412.1441 (2014)
-
(2014)
Scalable, High-Quality Object Detection
-
-
Szegedy, C.1
Reed, S.2
Erhan, D.3
Anguelov, D.4
-
4
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_23
-
(2014)
ECCV 2014. LNCS
, vol.8691
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
5
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
6
-
-
85029359197
-
Fast R-CNN
-
Girshick, R.: Fast R-CNN. In: ICCV (2015)
-
(2015)
ICCV
-
-
Girshick, R.1
-
7
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
8
-
-
84986259967
-
Inside-outside net: Detecting objects in context with skip pooling and recurrent neural nets
-
Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural nets. In: CVPR (2016)
-
(2016)
CVPR
-
-
Bell, S.1
Zitnick, C.L.2
Bala, K.3
Girshick, R.4
-
9
-
-
84963754861
-
-
arXiv:1405.0312
-
Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: common objects in context. arXiv:1405.0312 (2015)
-
(2015)
Microsoft COCO: Common Objects in Context
-
-
Lin, T.Y.1
Maire, M.2
Belongie, S.3
Bourdev, L.4
Girshick, R.5
Hays, J.6
Perona, P.7
Ramanan, D.8
Zitnick, C.L.9
Dollár, P.10
-
10
-
-
77951298115
-
The PASCAL visual object classes (VOC) challenge
-
Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)
-
(2010)
IJCV
, vol.88
, pp. 303-338
-
-
Everingham, M.1
Gool, L.V.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
11
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.4
Li, K.5
Fei-Fei, L.6
-
12
-
-
51949114829
-
Semantic texton forests for image categorization and segmentation
-
Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR (2008)
-
(2008)
CVPR
-
-
Shotton, J.1
Johnson, M.2
Cipolla, R.3
-
13
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. PAMI 35, 1915–1929 (2013)
-
(2013)
PAMI
, vol.35
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
14
-
-
84925305292
-
Recurrent conv. Neural networks for scene labeling
-
Pinheiro, P.O., Collobert, R.: Recurrent conv. neural networks for scene labeling. In: ICML (2014)
-
(2014)
ICML
-
-
Pinheiro, P.O.1
Collobert, R.2
-
15
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)
-
(2015)
ICCV
-
-
Eigen, D.1
Fergus, R.2
-
16
-
-
84973861983
-
Conditional random fields as recurrent neural nets
-
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, B., Su, Z., Du, D., Huang, C., Torr, P.: Conditional random fields as recurrent neural nets. In: ICCV (2015)
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, B.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
-
17
-
-
85083954148
-
Semantic image segmentation with deep conv. Nets and fully connected CRFs
-
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep conv. nets and fully connected CRFs. In: ICLR (2015)
-
(2015)
ICLR
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
19
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)
-
(2015)
ICCV
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
20
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)
-
(1998)
Proceedings of the IEEE
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
21
-
-
84906342998
-
Simultaneous detection and segmentation
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_20
-
(2014)
ECCV 2014. LNCS
, vol.8695
, pp. 297-312
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
23
-
-
84986282070
-
Instance-aware semantic segmentation via multi-task network cascades
-
Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR (2016)
-
(2016)
CVPR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
24
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: CVPR (2015)
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
25
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
26
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
27
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
28
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
29
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
30
-
-
84973859794
-
Holistically-nested edge detection
-
Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)
-
(2015)
ICCV
-
-
Xie, S.1
Tu, Z.2
-
31
-
-
84887328988
-
Pedestrian detection with unsupervised multi-stage feature learning
-
Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: CVPR (2013)
-
(2013)
CVPR
-
-
Sermanet, P.1
Kavukcuoglu, K.2
Chintala, S.3
Lecun, Y.4
-
32
-
-
84866688216
-
Measuring the objectness of image windows
-
Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. PAMI 34, 2189–2202 (2012)
-
(2012)
PAMI
, vol.34
, pp. 2189-2202
-
-
Alexe, B.1
Deselaers, T.2
Ferrari, V.3
-
33
-
-
84881160857
-
Selective search for object recog
-
Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recog. IJCV 104, 154 (2013)
-
(2013)
IJCV
, vol.104
, pp. 154
-
-
Uijlings, J.1
Van De Sande, K.2
Gevers, T.3
Smeulders, A.4
-
34
-
-
84906489617
-
Edge boxes: Locating object proposals from edges
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_26
-
(2014)
ECCV 2014. LNCS
, vol.8693
, pp. 391-405
-
-
Zitnick, C.L.1
Dollár, P.2
-
35
-
-
85006053812
-
Multiscale combinatorial grouping for image segmentation and object proposal gen
-
Pont-Tuset, J., Arbeláez, P., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal gen. PAMI PP(99), 1 (2015)
-
(2015)
PAMI PP
, Issue.99
, pp. 1
-
-
Pont-Tuset, J.1
Arbeláez, P.2
Barron, J.3
Marques, F.4
Malik, J.5
-
36
-
-
84906508364
-
Geodesic object proposals
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_47
-
(2014)
ECCV 2014. LNCS
, vol.8693
, pp. 725-739
-
-
Krähenbühl, P.1
Koltun, V.2
-
37
-
-
84911456672
-
RIGOR: Reusing inference in graph cuts for generating object regions
-
Humayun, A., Li, F., Rehg, J.M.: RIGOR: reusing inference in graph cuts for generating object regions. In: CVPR (2014)
-
(2014)
CVPR
-
-
Humayun, A.1
Li, F.2
Rehg, J.M.3
-
38
-
-
84963773434
-
What makes for effective detection proposals?
-
Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? PAMI 38(4), 814–830 (2015)
-
(2015)
PAMI
, vol.38
, Issue.4
, pp. 814-830
-
-
Hosang, J.1
Benenson, R.2
Dollár, P.3
Schiele, B.4
-
39
-
-
84973904859
-
Flownet: Learning optical flow with convolutional networks
-
Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., v.d. Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks. In: ICCV (2015)
-
(2015)
ICCV
-
-
Dosovitskiy, A.1
Fischer, P.2
Ilg, E.3
Hausser, P.4
Hazirbas, C.5
Golkov, V.6
Smagt, P.7
Cremers, D.8
Brox, T.9
-
40
-
-
77956001004
-
Deconvolutional networks
-
Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: CVPR (2010)
-
(2010)
CVPR
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
41
-
-
84990062696
-
A multipath network for object detection
-
Zagoruyko, S., Lerer, A., Lin, T.Y., Pinheiro, P.O., Gross, S., Chintala, S., Dollár, P.: A multipath network for object detection. In: BMVC (2016)
-
(2016)
BMVC
-
-
Zagoruyko, S.1
Lerer, A.2
Lin, T.Y.3
Pinheiro, P.O.4
Gross, S.5
Chintala, S.6
Dollár, P.7
|