메뉴 건너뛰기




Volumn 9905 LNCS, Issue , 2016, Pages 75-91

Learning to refine object segments

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTIONAL NEURAL NETWORKS; ENCODING (SYMBOLS); NETWORK ARCHITECTURE; NETWORK LAYERS; SIGNAL ENCODING;

EID: 84990036909     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46448-0_5     Document Type: Conference Paper
Times cited : (692)

References (41)
  • 1
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32, 1627–1645 (2010)
    • (2010) PAMI , vol.32 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 2
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using conv nets
    • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using conv nets. In: ICLR (2014)
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    Lecun, Y.6
  • 4
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_23
    • (2014) ECCV 2014. LNCS , vol.8691 , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 5
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 6
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • Girshick, R.: Fast R-CNN. In: ICCV (2015)
    • (2015) ICCV
    • Girshick, R.1
  • 7
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 8
    • 84986259967 scopus 로고    scopus 로고
    • Inside-outside net: Detecting objects in context with skip pooling and recurrent neural nets
    • Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural nets. In: CVPR (2016)
    • (2016) CVPR
    • Bell, S.1    Zitnick, C.L.2    Bala, K.3    Girshick, R.4
  • 12
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR (2008)
    • (2008) CVPR
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 13
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. PAMI 35, 1915–1929 (2013)
    • (2013) PAMI , vol.35 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    Lecun, Y.4
  • 14
    • 84925305292 scopus 로고    scopus 로고
    • Recurrent conv. Neural networks for scene labeling
    • Pinheiro, P.O., Collobert, R.: Recurrent conv. neural networks for scene labeling. In: ICML (2014)
    • (2014) ICML
    • Pinheiro, P.O.1    Collobert, R.2
  • 15
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)
    • (2015) ICCV
    • Eigen, D.1    Fergus, R.2
  • 17
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep conv. Nets and fully connected CRFs
    • Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep conv. nets and fully connected CRFs. In: ICLR (2015)
    • (2015) ICLR
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 19
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 21
    • 84906342998 scopus 로고    scopus 로고
    • Simultaneous detection and segmentation
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_20
    • (2014) ECCV 2014. LNCS , vol.8695 , pp. 297-312
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 23
    • 84986282070 scopus 로고    scopus 로고
    • Instance-aware semantic segmentation via multi-task network cascades
    • Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR (2016)
    • (2016) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 24
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: CVPR (2015)
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 25
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 26
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 28
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 29
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 30
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)
    • (2015) ICCV
    • Xie, S.1    Tu, Z.2
  • 31
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multi-stage feature learning
    • Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: CVPR (2013)
    • (2013) CVPR
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    Lecun, Y.4
  • 32
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. PAMI 34, 2189–2202 (2012)
    • (2012) PAMI , vol.34 , pp. 2189-2202
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 34
    • 84906489617 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_26
    • (2014) ECCV 2014. LNCS , vol.8693 , pp. 391-405
    • Zitnick, C.L.1    Dollár, P.2
  • 35
    • 85006053812 scopus 로고    scopus 로고
    • Multiscale combinatorial grouping for image segmentation and object proposal gen
    • Pont-Tuset, J., Arbeláez, P., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal gen. PAMI PP(99), 1 (2015)
    • (2015) PAMI PP , Issue.99 , pp. 1
    • Pont-Tuset, J.1    Arbeláez, P.2    Barron, J.3    Marques, F.4    Malik, J.5
  • 36
    • 84906508364 scopus 로고    scopus 로고
    • Geodesic object proposals
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_47
    • (2014) ECCV 2014. LNCS , vol.8693 , pp. 725-739
    • Krähenbühl, P.1    Koltun, V.2
  • 37
    • 84911456672 scopus 로고    scopus 로고
    • RIGOR: Reusing inference in graph cuts for generating object regions
    • Humayun, A., Li, F., Rehg, J.M.: RIGOR: reusing inference in graph cuts for generating object regions. In: CVPR (2014)
    • (2014) CVPR
    • Humayun, A.1    Li, F.2    Rehg, J.M.3
  • 38
    • 84963773434 scopus 로고    scopus 로고
    • What makes for effective detection proposals?
    • Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? PAMI 38(4), 814–830 (2015)
    • (2015) PAMI , vol.38 , Issue.4 , pp. 814-830
    • Hosang, J.1    Benenson, R.2    Dollár, P.3    Schiele, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.