-
1
-
-
0021758970
-
Introduction of new genetic material into pluripotent hematopoietic stem-cells of the mouse
-
Williams DA, Lemischka IR, Nathan DG, et al. Introduction of new genetic material into pluripotent hematopoietic stem-cells of the mouse. Nature 1984;310:476-480.
-
(1984)
Nature
, vol.310
, pp. 476-480
-
-
Williams, D.A.1
Lemischka, I.R.2
Nathan, D.G.3
-
2
-
-
0034724857
-
Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease
-
Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-672.
-
(2000)
Science
, vol.288
, pp. 669-672
-
-
Cavazzana-Calvo, M.1
Hacein-Bey, S.2
De Saint Basile, G.3
-
3
-
-
77954833516
-
Efficacy of gene therapy for X-linked severe combined immunodeficiency
-
Hacein-Bey-Abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010;363: 355-364.
-
(2010)
N Engl J Med
, vol.363
, pp. 355-364
-
-
Hacein-Bey-Abina, S.1
Hauer, J.2
Lim, A.3
-
4
-
-
59449098985
-
Gene therapy for immunodeficiency due to adenosine deaminase deficiency
-
Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009;360: 447-458.
-
(2009)
N Engl J Med
, vol.360
, pp. 447-458
-
-
Aiuti, A.1
Cattaneo, F.2
Galimberti, S.3
-
5
-
-
78149482538
-
Stem-cell gene therapy for the Wiskott-Aldrich syndrome
-
Boztug K, Schmidt M, Schwarzer A, et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010;363: 1918-1927.
-
(2010)
N Engl J Med
, vol.363
, pp. 1918-1927
-
-
Boztug, K.1
Schmidt, M.2
Schwarzer, A.3
-
6
-
-
84944339068
-
Gene therapy returns to centre stage
-
Naldini L. Gene therapy returns to centre stage. Nature 2015;526:351-360.
-
(2015)
Nature
, vol.526
, pp. 351-360
-
-
Naldini, L.1
-
7
-
-
51349090473
-
Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1
-
Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132-3142.
-
(2008)
J Clin Invest
, vol.118
, pp. 3132-3142
-
-
Hacein-Bey-Abina, S.1
Garrigue, A.2
Wang, G.P.3
-
8
-
-
51349158298
-
Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients
-
Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008;118:3143-3150.
-
(2008)
J Clin Invest
, vol.118
, pp. 3143-3150
-
-
Howe, S.J.1
Mansour, M.R.2
Schwarzwaelder, K.3
-
9
-
-
84891752685
-
General considerations on the biosafety of virusderived vectors used in gene therapy and vaccination
-
Baldo A, van den Akker E, Bergmans HE, et al. General considerations on the biosafety of virusderived vectors used in gene therapy and vaccination. Curr Gene Ther 2013;13:385-394.
-
(2013)
Curr Gene Ther
, vol.13
, pp. 385-394
-
-
Baldo, A.1
Van Den Akker, E.2
Bergmans, H.E.3
-
10
-
-
29144481848
-
Retroviral infection of non-dividing cells: Old and new perspectives
-
Yamashita M, Emerman M. Retroviral infection of non-dividing cells: old and new perspectives. Virology 2006;344:88-93.
-
(2006)
Virology
, vol.344
, pp. 88-93
-
-
Yamashita, M.1
Emerman, M.2
-
11
-
-
0037162715
-
HIV-1 integration in the human genome favors active genes and local hotspots
-
Schroder AR, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002;110:521-529.
-
(2002)
Cell
, vol.110
, pp. 521-529
-
-
Schroder, A.R.1
Shinn, P.2
Chen, H.3
-
12
-
-
79958181694
-
Current advances in retroviral gene therapy
-
Yi Y, Noh MJ, Lee KH. Current advances in retroviral gene therapy. Curr Gene Ther 2011;11: 218-228.
-
(2011)
Curr Gene Ther
, vol.11
, pp. 218-228
-
-
Yi, Y.1
Noh, M.J.2
Lee, K.H.3
-
13
-
-
84907487933
-
Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9
-
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014;124:4154-4161.
-
(2014)
J Clin Invest
, vol.124
, pp. 4154-4161
-
-
Gupta, R.M.1
Musunuru, K.2
-
14
-
-
72149090954
-
A simple cipher governs DNA recognition by TAL effectors
-
Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009;326:1501.
-
(2009)
Science
, vol.326
, pp. 1501
-
-
Moscou, M.J.1
Bogdanove, A.J.2
-
15
-
-
18944373328
-
Highly efficient endogenous human gene correction using designed zinc-finger nucleases
-
Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005;435:646-651.
-
(2005)
Nature
, vol.435
, pp. 646-651
-
-
Urnov, F.D.1
Miller, J.C.2
Lee, Y.L.3
-
16
-
-
84898778301
-
A guide to genome engineering with programmable nucleases
-
Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-334.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.S.2
-
17
-
-
84965190468
-
Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells
-
Liu J, Gaj T, Yang Y, et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 2015; 10:1842-1859.
-
(2015)
Nat Protoc
, vol.10
, pp. 1842-1859
-
-
Liu, J.1
Gaj, T.2
Yang, Y.3
-
18
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNAguided endonuclease
-
Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNAguided endonuclease. Nat Biotechnol 2013;31: 230-232.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
-
19
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
-
20
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013;31:227-229.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
-
21
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013;31:233-239.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
-
22
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337:816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
-
23
-
-
60549090253
-
Long-term control of HIV by CCR5 D32/D32 stem-cell transplantation
-
Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 D32/D32 stem-cell transplantation. N Engl J Med 2009;360:692-698.
-
(2009)
N Engl J Med
, vol.360
, pp. 692-698
-
-
Hutter, G.1
Nowak, D.2
Mossner, M.3
-
24
-
-
84941621118
-
Hemoglobin switching's surprise: The versatile transcription factor BCL11A is a master repressor of fetal hemoglobin
-
Bauer DE, Orkin SH. Hemoglobin switching's surprise: The versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 2015;33:62-70.
-
(2015)
Curr Opin Genet Dev
, vol.33
, pp. 62-70
-
-
Bauer, D.E.1
Orkin, S.H.2
-
25
-
-
2442536906
-
Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor
-
Segal DJ, Goncalves J, Eberhardy S, et al. Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor. J Biol Chem 2004;279:14509-14519.
-
(2004)
J Biol Chem
, vol.279
, pp. 14509-14519
-
-
Segal, D.J.1
Goncalves, J.2
Eberhardy, S.3
-
26
-
-
84911422892
-
Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing
-
Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014;32: 941-946.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 941-946
-
-
Heckl, D.1
Kowalczyk, M.S.2
Yudovich, D.3
-
27
-
-
85032051450
-
The cytotoxic effect of RNA-guided endonuclease Cas9 on human hematopoietic stem and progenitor cells (HSPCs)
-
Yu KR, Corat MAF, Metais JY, et al. The cytotoxic effect of RNA-guided endonuclease Cas9 on human hematopoietic stem and progenitor cells (HSPCs). Mol Ther 2016;24:S225-S226.
-
(2016)
Mol Ther
, vol.24
, pp. S225-S226
-
-
Yu, K.R.1
Corat, M.A.F.2
Metais, J.Y.3
-
28
-
-
84864439768
-
Targeted gene knockout by direct delivery of zinc-finger nuclease proteins
-
Gaj T, Guo J, Kato Y, et al. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 2012;9:805-807.
-
(2012)
Nat Methods
, vol.9
, pp. 805-807
-
-
Gaj, T.1
Guo, J.2
Kato, Y.3
-
29
-
-
68249112926
-
Integration-deficient lentiviral vectors: A slow coming of age
-
Wanisch K, Yanez-Munoz RJ. Integration-deficient lentiviral vectors: A slow coming of age. Mol Ther 2009;17:1316-1332.
-
(2009)
Mol Ther
, vol.17
, pp. 1316-1332
-
-
Wanisch, K.1
Yanez-Munoz, R.J.2
-
30
-
-
35948946526
-
Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery
-
Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007;25: 1298-1306.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 1298-1306
-
-
Lombardo, A.1
Genovese, P.2
Beausejour, C.M.3
-
31
-
-
84883743436
-
Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus
-
Joglekar AV, Hollis RP, Kuftinec G, et al. Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus. Mol Ther 2013;21: 1705-1717.
-
(2013)
Mol Ther
, vol.21
, pp. 1705-1717
-
-
Joglekar, A.V.1
Hollis, R.P.2
Kuftinec, G.3
-
32
-
-
84878528467
-
Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases
-
Li LJ, Krymskaya L, Wang JB, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 2013;21:1259-1269.
-
(2013)
Mol Ther
, vol.21
, pp. 1259-1269
-
-
Li, L.J.1
Krymskaya, L.2
Wang, J.B.3
-
33
-
-
84928061468
-
Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under micro-RNA regulation
-
Saydaminova K, Ye X, Wang H, et al. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under micro-RNA regulation. Mol Ther Methods Clin Dev 2015;1:14057.
-
(2015)
Mol Ther Methods Clin Dev
, vol.1
, pp. 14057
-
-
Saydaminova, K.1
Ye, X.2
Wang, H.3
-
34
-
-
84929761323
-
Adeno-associated virus at 50: A golden anniversary of discovery, research, and gene therapy success-a personal perspective
-
Hastie E, Samulski RJ. Adeno-associated virus at 50: A golden anniversary of discovery, research, and gene therapy success-a personal perspective. Hum Gene Ther 2015;26:257-265.
-
(2015)
Hum Gene Ther
, vol.26
, pp. 257-265
-
-
Hastie, E.1
Samulski, R.J.2
-
35
-
-
84963940775
-
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
-
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016;351:403-407.
-
(2016)
Science
, vol.351
, pp. 403-407
-
-
Nelson, C.E.1
Hakim, C.H.2
Ousterout, D.G.3
-
36
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015;520:186-191.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
-
37
-
-
84949814888
-
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors
-
Wang J, Exline CM, DeClercq JJ, et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 2015;33:1256-1263.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1256-1263
-
-
Wang, J.1
Exline, C.M.2
DeClercq, J.J.3
-
38
-
-
84947914797
-
MLL leukemia induction by genome editing of human CD34+ hematopoietic cells
-
Buechele C, Breese EH, Schneidawind D, et al. MLL leukemia induction by genome editing of human CD34+ hematopoietic cells. Blood 2015;126: 1683-1694.
-
(2015)
Blood
, vol.126
, pp. 1683-1694
-
-
Buechele, C.1
Breese, E.H.2
Schneidawind, D.3
-
39
-
-
84922671463
-
Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9
-
Mandal PK, Ferreira LM, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 2014;15:643-652.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 643-652
-
-
Mandal, P.K.1
Ferreira, L.M.2
Collins, R.3
-
40
-
-
78650735673
-
Human hematopoietic stem/progenitor cells modified by zincfinger nucleases targeted to CCR5 control HIV-1 in vivo
-
Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zincfinger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010;28:839-847.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 839-847
-
-
Holt, N.1
Wang, J.2
Kim, K.3
-
41
-
-
84960431733
-
Genome-editing technologies for gene and cell therapy
-
Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther 2016;24:430-446.
-
(2016)
Mol Ther
, vol.24
, pp. 430-446
-
-
Maeder, M.L.1
Gersbach, C.A.2
-
42
-
-
84902315464
-
Targeted genome editing in human repopulating haematopoietic stem cells
-
Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014;510: 235-240.
-
(2014)
Nature
, vol.510
, pp. 235-240
-
-
Genovese, P.1
Schiroli, G.2
Escobar, G.3
-
43
-
-
84963516618
-
Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease
-
De Ravin SS, Reik A, Liu PQ, et al. Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat Biotechnol 2016;34:424-429.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 424-429
-
-
De Ravin, S.S.1
Reik, A.2
Liu, P.Q.3
-
44
-
-
85002639397
-
Longterm multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates
-
Peterson CW, Wang J, Norman KK, et al. Longterm multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood 2016;127:2416-2426.
-
(2016)
Blood
, vol.127
, pp. 2416-2426
-
-
Peterson, C.W.1
Wang, J.2
Norman, K.K.3
-
45
-
-
84983768222
-
Clonal analysis of human bone marrow CD34+ cells edited by BCL11A-targeting zinc finger nucleases reveals clinically relevant levels of fetal globin expression in edited erythroid progeny
-
Chang KH, Sullivan T, Liu M, et al. Clonal analysis of human bone marrow CD34+ cells edited by BCL11A-targeting zinc finger nucleases reveals clinically relevant levels of fetal globin expression in edited erythroid progeny. Blood 2015;126.
-
(2015)
Blood
, vol.126
-
-
Chang, K.H.1
Sullivan, T.2
Liu, M.3
-
46
-
-
84937905397
-
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
-
Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 2015;33:985-989.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 985-989
-
-
Hendel, A.1
Bak, R.O.2
Clark, J.T.3
-
47
-
-
84930943161
-
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
-
Liang X, Potter J, Kumar S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 2015;208: 44-53.
-
(2015)
J Biotechnol
, vol.208
, pp. 44-53
-
-
Liang, X.1
Potter, J.2
Kumar, S.3
-
48
-
-
85032048895
-
Targeted genome editing in mouse hematopoietic stem/ progenitor cells (HSPC) to model gene correction of SCID-X1
-
Schiroli G, Genovese P, Capo V, et al. Targeted genome editing in mouse hematopoietic stem/ progenitor cells (HSPC) to model gene correction of SCID-X1. Hum Gene Ther 2015;26: A8-A8.
-
(2015)
Hum Gene Ther
, vol.26
, pp. A8-A8
-
-
Schiroli, G.1
Genovese, P.2
Capo, V.3
-
49
-
-
84928470127
-
Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells
-
Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 2015;125: 2597-2604.
-
(2015)
Blood
, vol.125
, pp. 2597-2604
-
-
Hoban, M.D.1
Cost, G.J.2
Mendel, M.C.3
-
51
-
-
33747888634
-
Modeling oncogenic translocations: Distinct roles for double-strand break repair pathways in translocation formation in mammalian cells
-
Weinstock DM, Richardson CA, Elliott B, et al. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst) 2006;5:1065-1074.
-
(2006)
DNA Repair (Amst)
, vol.5
, pp. 1065-1074
-
-
Weinstock, D.M.1
Richardson, C.A.2
Elliott, B.3
-
52
-
-
34447319080
-
An improved zinc-finger nuclease architecture for highly specific genome editing
-
Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007;25: 778-785.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 778-785
-
-
Miller, J.C.1
Holmes, M.C.2
Wang, J.3
-
53
-
-
84928925359
-
Improved specificity of TALE-based genome editing using an expanded RVD repertoire
-
Miller JC, Zhang L, Xia DF, et al. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods 2015;12: 465-471.
-
(2015)
Nat Methods
, vol.12
, pp. 465-471
-
-
Miller, J.C.1
Zhang, L.2
Xia, D.F.3
-
54
-
-
84923106217
-
Therapeutic genome editing: Prospects and challenges
-
Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015; 21:121-131.
-
(2015)
Nat Med
, vol.21
, pp. 121-131
-
-
Cox, D.B.1
Platt, R.J.2
Zhang, F.3
-
55
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014;32: 279-284.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
-
56
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 2014;24: 132-141.
-
(2014)
Genome Res
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
Kim, S.2
Kim, Y.3
-
57
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013;154:1380-1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
-
58
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013;31:833-838.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 833-838
-
-
Mali, P.1
Aach, J.2
Stranges, P.B.3
-
59
-
-
84981318543
-
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
-
Kim D, Kim J, Hur JK, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 2016;34: 863-868.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 863-868
-
-
Kim, D.1
Kim, J.2
Hur, J.K.3
-
60
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759-771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
-
61
-
-
0034671818
-
A mechanism for the impaired IFN-c production in C-C chemokine receptor 2 (CCR2) knockout mice: Role of CCR2 in linking the innate and adaptive immune responses
-
Peters W, Dupuis M, Charo IF. A mechanism for the impaired IFN-c production in C-C chemokine receptor 2 (CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses. J Immunol 2000;165:7072-7077.
-
(2000)
J Immunol
, vol.165
, pp. 7072-7077
-
-
Peters, W.1
Dupuis, M.2
Charo, I.F.3
-
62
-
-
0030860210
-
CCR2 chemokine receptor and AIDS progression
-
Smith MW, Carrington M, Winkler C, et al. CCR2 chemokine receptor and AIDS progression. Nat Med 1997;3:1052-1053.
-
(1997)
Nat Med
, vol.3
, pp. 1052-1053
-
-
Smith, M.W.1
Carrington, M.2
Winkler, C.3
-
63
-
-
80052766645
-
An unbiased genome-wide analysis of zinc-finger nuclease specificity
-
Gabriel R, Lombardo A, Arens A, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 2011;29: 816-823.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 816-823
-
-
Gabriel, R.1
Lombardo, A.2
Arens, A.3
-
64
-
-
84928948209
-
Genome editing technologies: Defining a path to clinic
-
Corrigan-Curay J, O'Reilly M, Kohn DB, et al. Genome editing technologies: defining a path to clinic. Mol Ther 2015;23:796-806.
-
(2015)
Mol Ther
, vol.23
, pp. 796-806
-
-
Corrigan-Curay, J.1
O'Reilly, M.2
Kohn, D.B.3
-
65
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015; 33:187-197.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
-
66
-
-
77956233247
-
A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosisindependent role for p53 in self-renewal
-
Milyavsky M, Gan OI, Trottier M, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosisindependent role for p53 in self-renewal. Cell Stem Cell 2010;7:186-197.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 186-197
-
-
Milyavsky, M.1
Gan, O.I.2
Trottier, M.3
-
67
-
-
84951813219
-
Towards a new era in medicine: Therapeutic genome editing
-
Porteus MH. Towards a new era in medicine: Therapeutic genome editing. Genome Biol 2015;16:286.
-
(2015)
Genome Biol
, vol.16
, pp. 286
-
-
Porteus, M.H.1
-
68
-
-
54549086660
-
NOD/SCID repopulating cells contribute only to short-term repopulation in the baboon
-
Mezquita P, Beard BC, Kiem HP. NOD/SCID repopulating cells contribute only to short-term repopulation in the baboon. Gene Ther 2008;15: 1460-1462.
-
(2008)
Gene Ther
, vol.15
, pp. 1460-1462
-
-
Mezquita, P.1
Beard, B.C.2
Kiem, H.P.3
-
69
-
-
77955477782
-
Comparison of human cord blood engraftment between immunocompromised mouse strains
-
McDermott SP, Eppert K, Lechman ER, et al. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 2010;116:193-200.
-
(2010)
Blood
, vol.116
, pp. 193-200
-
-
McDermott, S.P.1
Eppert, K.2
Lechman, E.R.3
-
70
-
-
79954692758
-
Ex vivo gene transfer and correction for cell-based therapies
-
Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 2011;12: 301-315.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 301-315
-
-
Naldini, L.1
-
71
-
-
84895487305
-
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
-
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901-910.
-
(2014)
N Engl J Med
, vol.370
, pp. 901-910
-
-
Tebas, P.1
Stein, D.2
Tang, W.W.3
-
72
-
-
84942903938
-
Multiplex genome-edited T-cell manufacturing platform for ''off-the-shelf'' adoptive T-cell immunotherapies
-
Poirot L, Philip B, Schiffer-Mannioui C, et al. Multiplex genome-edited T-cell manufacturing platform for ''off-the-shelf'' adoptive T-cell immunotherapies. Cancer Res 2015;75:3853-3864.
-
(2015)
Cancer Res
, vol.75
, pp. 3853-3864
-
-
Poirot, L.1
Philip, B.2
Schiffer-Mannioui, C.3
|