메뉴 건너뛰기




Volumn 12, Issue 6, 2016, Pages

Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization

Author keywords

Machine learning; MAGMa; Metabolite identification; Method comparison; Method optimization; Untargeted metabolomics

Indexed keywords

CONTROLLED STUDY; LIBRARY; MACHINE LEARNING; METABOLITE;

EID: 84964754404     PISSN: 15733882     EISSN: 15733890     Source Type: Journal    
DOI: 10.1007/s11306-016-1036-3     Document Type: Article
Times cited : (40)

References (26)
  • 1
    • 85099637803 scopus 로고    scopus 로고
    • Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification
    • Allen, F., Greiner, R., & Wishart, D. (2014). Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics, pp. 1–13.
    • (2014) Metabolomics , pp. 1-13
    • Allen, F.1    Greiner, R.2    Wishart, D.3
  • 2
    • 84964712222 scopus 로고    scopus 로고
    • CASMI (2015). Critical Assessment of Small Molecule Identification
    • CASMI (2015). Critical Assessment of Small Molecule Identification. http://www.casmi-contest.org2015.
  • 3
    • 38549127678 scopus 로고    scopus 로고
    • ChEBI: a database and ontology for chemical entities of biological interest
    • COI: 1:CAS:528:DC%2BD1cXhtVWju7c%3D, PID: 17932057
    • Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., et al. (2008). ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Research,36, D344–D350. doi:10.1093/nar/gkm791.
    • (2008) Nucleic Acids Research , vol.36 , pp. D344-D350
    • Degtyarenko, K.1    de Matos, P.2    Ennis, M.3    Hastings, J.4    Zbinden, M.5    McNaught, A.6
  • 5
    • 84874345577 scopus 로고    scopus 로고
    • Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics
    • Dunn, W. B., Erban, A., Weber, R. J. M., Creek, D. J., Brown, M., Breitling, R., et al. (2013). Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics,9(1), S44–S66. doi:10.1007/s11306-012-0434-4.
    • (2013) Metabolomics , vol.9 , Issue.1 , pp. S44-S66
    • Dunn, W.B.1    Erban, A.2    Weber, R.J.M.3    Creek, D.J.4    Brown, M.5    Breitling, R.6
  • 7
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning,46(1–3), 389–422. doi:10.1023/A:1012487302797.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 8
    • 84908680651 scopus 로고    scopus 로고
    • Overview of software options for processing, analysis and interpretation of mass spectrometric proteomic data
    • COI: 1:CAS:528:DC%2BC2cXhslagsLfI, PID: 25303385
    • Haga, S. W., & Wu, H. F. (2014). Overview of software options for processing, analysis and interpretation of mass spectrometric proteomic data. Journal of Mass Spectrometry,49(10), 959–969. doi:10.1002/jms.3414.
    • (2014) Journal of Mass Spectrometry , vol.49 , Issue.10 , pp. 959-969
    • Haga, S.W.1    Wu, H.F.2
  • 9
    • 84866437252 scopus 로고    scopus 로고
    • Metabolite identification and molecular fingerprint prediction through machine learning
    • COI: 1:CAS:528:DC%2BC38XhtlantbjM, PID: 22815355
    • Heinonen, M., Shen, H., Zamboni, N., & Rousu, J. (2012). Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics,28(18), 2333–2341. doi:10.1093/bioinformatics/bts437.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 2333-2341
    • Heinonen, M.1    Shen, H.2    Zamboni, N.3    Rousu, J.4
  • 10
    • 77954439868 scopus 로고    scopus 로고
    • MassBank: a public repository for sharing mass spectral data for life sciences
    • COI: 1:CAS:528:DC%2BC3cXovVCgsLg%3D, PID: 20623627
    • Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry,45(7), 703–714. doi:10.1002/jms.1777.
    • (2010) Journal of Mass Spectrometry , vol.45 , Issue.7 , pp. 703-714
    • Horai, H.1    Arita, M.2    Kanaya, S.3    Nihei, Y.4    Ikeda, T.5    Suwa, K.6
  • 11
    • 84888191935 scopus 로고    scopus 로고
    • Computational mass spectrometry for small-molecule fragmentation
    • COI: 1:CAS:528:DC%2BC3sXhvFyltr7J
    • Hufsky, F., Scheubert, K., & Böcker, S. (2014). Computational mass spectrometry for small-molecule fragmentation. TrAC Trends in Analytical Chemistry,53, 41–48.
    • (2014) TrAC Trends in Analytical Chemistry , vol.53 , pp. 41-48
    • Hufsky, F.1    Scheubert, K.2    Böcker, S.3
  • 13
    • 84940036737 scopus 로고    scopus 로고
    • MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics
    • PID: 26322134
    • Jeffryes, J. G., Colastani, R. L., Elbadawi-Sidhu, M., Kind, T., Niehaus, T. D., Broadbelt, L. J., et al. (2015). MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. Journal of Cheminformatics,7, 44. doi:10.1186/s13321-015-0087-1.
    • (2015) Journal of Cheminformatics , vol.7 , pp. 44
    • Jeffryes, J.G.1    Colastani, R.L.2    Elbadawi-Sidhu, M.3    Kind, T.4    Niehaus, T.D.5    Broadbelt, L.J.6
  • 14
    • 54949134905 scopus 로고    scopus 로고
    • Chemical substructures that enrich for biological activity
    • COI: 1:CAS:528:DC%2BD1cXht12gtb3L, PID: 18784118
    • Klekota, J., & Roth, F. P. (2008). Chemical substructures that enrich for biological activity. Bioinformatics,24(21), 2518–2525. doi:10.1093/bioinformatics/btn479.
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2518-2525
    • Klekota, J.1    Roth, F.P.2
  • 15
    • 78650173423 scopus 로고    scopus 로고
    • Computational mass spectrometry for metabolomics: identification of metabolites and small molecules
    • COI: 1:CAS:528:DC%2BC3cXht1KnsrbN, PID: 20936272
    • Neumann, S., & Bocker, S. (2010). Computational mass spectrometry for metabolomics: identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry,398(7–8), 2779–2788. doi:10.1007/s00216-010-4142-5.
    • (2010) Analytical and Bioanalytical Chemistry , vol.398 , Issue.7-8 , pp. 2779-2788
    • Neumann, S.1    Bocker, S.2
  • 20
  • 21
    • 84866123900 scopus 로고    scopus 로고
    • An accelerated workflow for untargeted metabolomics using the METLIN database
    • COI: 1:CAS:528:DC%2BC38XhtlamtbnJ, PID: 22965049
    • Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G. J., & Siuzdak, G. (2012). An accelerated workflow for untargeted metabolomics using the METLIN database. Nature Biotechnology,30(9), 826–828. doi:10.1038/nbt.2348.
    • (2012) Nature Biotechnology , vol.30 , Issue.9 , pp. 826-828
    • Tautenhahn, R.1    Cho, K.2    Uritboonthai, W.3    Zhu, Z.4    Patti, G.J.5    Siuzdak, G.6
  • 22
    • 84930182757 scopus 로고    scopus 로고
    • Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics
    • COI: 1:CAS:528:DC%2BC2MXmsF2gur4%3D, PID: 26213431
    • Vaniya, A., & Fiehn, O. (2015). Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends in Analytical Chemistry,69, 52–61. doi:10.1016/j.trac.2015.04.002.
    • (2015) Trends in Analytical Chemistry , vol.69 , pp. 52-61
    • Vaniya, A.1    Fiehn, O.2
  • 23
    • 84907885060 scopus 로고    scopus 로고
    • MIDAS: a database-searching algorithm for metabolite identification in metabolomics
    • COI: 1:CAS:528:DC%2BC2cXhsVWltbzJ, PID: 25157598
    • Wang, Y., Kora, G., Bowen, B. P., & Pan, C. (2014). MIDAS: a database-searching algorithm for metabolite identification in metabolomics. Analytical Chemistry,86(19), 9496–9503. doi:10.1021/ac5014783.
    • (2014) Analytical Chemistry , vol.86 , Issue.19 , pp. 9496-9503
    • Wang, Y.1    Kora, G.2    Bowen, B.P.3    Pan, C.4
  • 24
    • 84876148784 scopus 로고    scopus 로고
    • HMDB 3.0-the human metabolome database in 2013
    • COI: 1:CAS:528:DC%2BC38XhvV2ktrnP, PID: 23161693
    • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res,41, D801–D807. doi:10.1093/nar/gks1065.
    • (2013) Nucleic Acids Res , vol.41 , pp. D801-D807
    • Wishart, D.S.1    Jewison, T.2    Guo, A.C.3    Wilson, M.4    Knox, C.5    Liu, Y.6
  • 25
    • 58149202163 scopus 로고    scopus 로고
    • HMDB: a knowledgebase for the human metabolome
    • COI: 1:CAS:528:DC%2BD1cXhsFejt7fO, PID: 18953024
    • Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res,37, D603–D610. doi:10.1093/nar/gkn810.
    • (2009) Nucleic Acids Res , vol.37 , pp. D603-D610
    • Wishart, D.S.1    Knox, C.2    Guo, A.C.3    Eisner, R.4    Young, N.5    Gautam, B.6
  • 26
    • 77952302069 scopus 로고    scopus 로고
    • In silico fragmentation for computer assisted identification of metabolite mass spectra
    • PID: 20307295
    • Wolf, S., Schmidt, S., Muller-Hannemann, M., & Neumann, S. (2010). In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics,11, 148. doi:10.1186/1471-2105-11-148.
    • (2010) BMC Bioinformatics , vol.11 , pp. 148
    • Wolf, S.1    Schmidt, S.2    Muller-Hannemann, M.3    Neumann, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.