메뉴 건너뛰기




Volumn 92, Issue 9, 2016, Pages 861-871

Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: Decision tree, k -nearest neighbors, and support vector machine

Author keywords

decision tree; k nearest neighbors; machine learning; Multiple sclerosis; stationary wavelet entropy; support vector machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; BRAIN MAPPING; DECISION TREES; ENTROPY; IMAGE RETRIEVAL; MAGNETIC RESONANCE IMAGING; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; SUPPORT VECTOR MACHINES;

EID: 84988736270     PISSN: 00375497     EISSN: 17413133     Source Type: Journal    
DOI: 10.1177/0037549716666962     Document Type: Article
Times cited : (150)

References (62)
  • 1
    • 84941356812 scopus 로고    scopus 로고
    • Physical activity and exercise training in multiple sclerosis: A review and content analysis of qualitative research identifying perceived determinants and consequences
    • Learmonth YC, Motl RW., Physical activity and exercise training in multiple sclerosis: a review and content analysis of qualitative research identifying perceived determinants and consequences. Disabil Rehabil 2016; 38: 1227-1242.
    • (2016) Disabil Rehabil , vol.38 , pp. 1227-1242
    • Learmonth, Y.C.1    Motl, R.W.2
  • 2
    • 84960172688 scopus 로고    scopus 로고
    • From genetic associations to functional studies in multiple sclerosis
    • Bos SD, Berge T, Celius EG, et al. From genetic associations to functional studies in multiple sclerosis. Eur J Neurol 2016; 23: 847-853.
    • (2016) Eur J Neurol , vol.23 , pp. 847-853
    • Bos, S.D.1    Berge, T.2    Celius, E.G.3
  • 3
    • 84959554349 scopus 로고    scopus 로고
    • Work-related problems in multiple sclerosis: A literature review on its associates and determinants
    • Raggi A, Covelli V, Schiavolin S, et al. Work-related problems in multiple sclerosis: a literature review on its associates and determinants. Disabil Rehabil 2016; 38: 936-944.
    • (2016) Disabil Rehabil , vol.38 , pp. 936-944
    • Raggi, A.1    Covelli, V.2    Schiavolin, S.3
  • 4
    • 84962799515 scopus 로고    scopus 로고
    • Minocycline added to subcutaneous interferon-1a in multiple sclerosis: Randomized RECYCLINE study
    • Sorensen PS, Sellebjerg F, Lycke J, et al. Minocycline added to subcutaneous interferon-1a in multiple sclerosis: randomized RECYCLINE study. Eur J Neurol 2016; 23: 861-870.
    • (2016) Eur J Neurol , vol.23 , pp. 861-870
    • Sorensen, P.S.1    Sellebjerg, F.2    Lycke, J.3
  • 5
    • 84963751173 scopus 로고    scopus 로고
    • Fatigue management in multiple sclerosis
    • Article ID 26
    • Tur C., Fatigue management in multiple sclerosis. Curr Treat Opt Neurol 2016; 18: Article ID 26.
    • (2016) Curr Treat Opt Neurol , vol.18
    • Tur, C.1
  • 6
    • 84945959419 scopus 로고    scopus 로고
    • A disproportionate burden of care: Gender differences in mental health, health-related quality of life, and social support in Mexican multiple sclerosis caregivers
    • 2015. DOI: 10.1155/2015/283958
    • Perrin PB, Panyavin I, Paredes AM, et al. A disproportionate burden of care: gender differences in mental health, health-related quality of life, and social support in Mexican multiple sclerosis caregivers. Behav Neurol 2015; 2015. DOI: 10.1155/2015/283958.
    • (2015) Behav Neurol
    • Perrin, P.B.1    Panyavin, I.2    Paredes, A.M.3
  • 7
    • 84988373886 scopus 로고    scopus 로고
    • Vision disturbances in multiple sclerosis
    • Costello F., Vision disturbances in multiple sclerosis. Semin Neurol 2016; 36: 185-195.
    • (2016) Semin Neurol , vol.36 , pp. 185-195
    • Costello, F.1
  • 8
    • 84922827175 scopus 로고    scopus 로고
    • Retinal damage and vision loss in African American multiple sclerosis patients
    • Kimbrough DJ, Sotirchos ES, Wilson JA, et al. Retinal damage and vision loss in African American multiple sclerosis patients. Ann Neurol 2015; 77: 228-236.
    • (2015) Ann Neurol , vol.77 , pp. 228-236
    • Kimbrough, D.J.1    Sotirchos, E.S.2    Wilson, J.A.3
  • 9
    • 84988710610 scopus 로고    scopus 로고
    • Impaired color vision as determined by Farnsworth Munsell 100 Hue testing is tightly associated with retinal thinning in multiple sclerosis
    • Longbrake EE, Lancia S, Tutlam N, et al. Impaired color vision as determined by Farnsworth Munsell 100 Hue testing is tightly associated with retinal thinning in multiple sclerosis. Multiple Sclerosis J 2014; 20: 358-358.
    • (2014) Multiple Sclerosis J , vol.20 , pp. 358
    • Longbrake, E.E.1    Lancia, S.2    Tutlam, N.3
  • 10
    • 84907097278 scopus 로고    scopus 로고
    • Prevalence of joint contractures and muscle weakness in people with multiple sclerosis
    • Hoang PD, Gandevia SC, Herbert RD., Prevalence of joint contractures and muscle weakness in people with multiple sclerosis. Disabil Rehabil 2014; 36: 1588-1593.
    • (2014) Disabil Rehabil , vol.36 , pp. 1588-1593
    • Hoang, P.D.1    Gandevia, S.C.2    Herbert, R.D.3
  • 11
    • 84906839716 scopus 로고    scopus 로고
    • Mindfulness-based interventions in multiple sclerosis: Beneficial effects of Tai Chi on balance, coordination, fatigue and depression
    • Article ID 165
    • Burschka JM, Keune PM, Hofstadt-van Oy U, et al. Mindfulness-based interventions in multiple sclerosis: beneficial effects of Tai Chi on balance, coordination, fatigue and depression. BMC Neurol 2014; 14: Article ID 165.
    • (2014) BMC Neurol , vol.14
    • Burschka, J.M.1    Keune, P.M.2    Hofstadt-Van Oy, U.3
  • 12
    • 84959361470 scopus 로고    scopus 로고
    • Increased diffusion in the normal appearing white matter of brain tumor patients: Is this just tumor infiltration?
    • Horvath A, Perlaki G, Toth A, et al. Increased diffusion in the normal appearing white matter of brain tumor patients: is this just tumor infiltration?. J Neuro Oncol 2016; 127: 83-90.
    • (2016) J Neuro Oncol , vol.127 , pp. 83-90
    • Horvath, A.1    Perlaki, G.2    Toth, A.3
  • 13
    • 85029191043 scopus 로고    scopus 로고
    • An Assessment of inflammatory activity in human post-mortem cortical lesions and normal appearing white matter in multiple sclerosis
    • Magee R, Nolan YM, Downer EJ., An Assessment of inflammatory activity in human post-mortem cortical lesions and normal appearing white matter in multiple sclerosis. Ir J Med Sci 2016; 185: S19-S20.
    • (2016) Ir J Med Sci , vol.185 , pp. S19-S20
    • Magee, R.1    Nolan, Y.M.2    Downer, E.J.3
  • 14
    • 84988733521 scopus 로고    scopus 로고
    • Increased ongoing axonal injury in spinal normal-appearing white matter in multiple sclerosis as compared to neuromyelitis optica
    • Wegner C, Swiniarski A, Ott M, et al. Increased ongoing axonal injury in spinal normal-appearing white matter in multiple sclerosis as compared to neuromyelitis optica. Multiple Sclerosis J 2015; 21: 69-69.
    • (2015) Multiple Sclerosis J , vol.21 , pp. 69
    • Wegner, C.1    Swiniarski, A.2    Ott, M.3
  • 15
    • 77951279265 scopus 로고    scopus 로고
    • Multiscale AM-FM demodulation and image reconstruction methods with improved accuracy
    • Murray V, Rodriguez P, Pattichis MS., Multiscale AM-FM demodulation and image reconstruction methods with improved accuracy. IEEE Trans Image Proc 2010; 19: 1138-1152.
    • (2010) IEEE Trans Image Proc , vol.19 , pp. 1138-1152
    • Murray, V.1    Rodriguez, P.2    Pattichis, M.S.3
  • 16
    • 84942872731 scopus 로고    scopus 로고
    • An automated and intelligent medical decision support system for brain MRI scans classification
    • Article ID
    • Siddiqui MF, Reza AW, Kanesan J., An automated and intelligent medical decision support system for brain MRI scans classification. Plos One 2015; 10: Article ID e0135875.
    • (2015) Plos One , vol.10 , pp. e0135875
    • Siddiqui, M.F.1    Reza, A.W.2    Kanesan, J.3
  • 17
    • 84937437761 scopus 로고    scopus 로고
    • Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
    • Phillips P, Dong Z, Yang J., Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Progr Electromagn Res 2015; 152: 41-58.
    • (2015) Progr Electromagn Res , vol.152 , pp. 41-58
    • Phillips, P.1    Dong, Z.2    Yang, J.3
  • 18
    • 84988733543 scopus 로고    scopus 로고
    • Feature selection in order to extract multiple sclerosis lesions automatically in 3D brain magnetic resonance images using combination of support vector machine and genetic algorithm
    • Khotanlou H, Afrasiabi M., Feature selection in order to extract multiple sclerosis lesions automatically in 3D brain magnetic resonance images using combination of support vector machine and genetic algorithm. J Med Signal Sens 2012; 2: 211-218.
    • (2012) J Med Signal Sens , vol.2 , pp. 211-218
    • Khotanlou, H.1    Afrasiabi, M.2
  • 19
    • 84901848013 scopus 로고    scopus 로고
    • Development of a computer-aided diagnostic system for detecting multiple sclerosis using magnetic resonance images
    • Tachinaga S, Hiura Y, Kawashita I, et al. Development of a computer-aided diagnostic system for detecting multiple sclerosis using magnetic resonance images. Nihon Hoshasen Gijutsu Gakkai zasshi 2014; 70: 223-229.
    • (2014) Nihon Hoshasen Gijutsu Gakkai Zasshi , vol.70 , pp. 223-229
    • Tachinaga, S.1    Hiura, Y.2    Kawashita, I.3
  • 20
    • 84930335593 scopus 로고    scopus 로고
    • Classification of multiple sclerosis lesions using adaptive dictionary learning
    • Deshpande H, Maurel P, Barillot C., Classification of multiple sclerosis lesions using adaptive dictionary learning. Comput Med Imag Graph 2015; 46: 2-10.
    • (2015) Comput Med Imag Graph , vol.46 , pp. 2-10
    • Deshpande, H.1    Maurel, P.2    Barillot, C.3
  • 21
    • 84959508179 scopus 로고    scopus 로고
    • Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests
    • Nayak DR, Dash R, Majhi B., Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 2016; 177: 188-197.
    • (2016) Neurocomputing , vol.177 , pp. 188-197
    • Nayak, D.R.1    Dash, R.2    Majhi, B.3
  • 22
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha M, Joseph KP, Mathew AT., Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit Lett 2013; 34: 2151-2156.
    • (2013) Pattern Recognit Lett , vol.34 , pp. 2151-2156
    • Saritha, M.1    Joseph, K.P.2    Mathew, A.T.3
  • 23
    • 84962667208 scopus 로고    scopus 로고
    • Detection of abnormal MR brains based on wavelet entropy and feature selection
    • Zhou XX, Ji GL, Yang JQ, et al. Detection of abnormal MR brains based on wavelet entropy and feature selection. IEEJ Trans Electr Electr Eng 2016; 11: 364-373.
    • (2016) IEEJ Trans Electr Electr Eng , vol.11 , pp. 364-373
    • Zhou, X.X.1    Ji, G.L.2    Yang, J.Q.3
  • 24
    • 84960340430 scopus 로고    scopus 로고
    • Application of stationary wavelet entropy in pathological brain detection
    • Epub ahead of print 11 March 2016. DOI: 10.1007/s11042-016-3401-7
    • Du S, Atangana A, Liu A, et al. Application of stationary wavelet entropy in pathological brain detection. Multimedia Tool Appl. Epub ahead of print 11 March 2016. DOI: 10.1007/s11042-016-3401-7.
    • Multimedia Tool Appl
    • Du, S.1    Atangana, A.2    Liu, A.3
  • 26
    • 78651499929 scopus 로고    scopus 로고
    • Improvement of digital mammogram images using histogram equalization, histogram stretching and median filter
    • Langarizadeh M, Mahmud R, Ramli AR, et al. Improvement of digital mammogram images using histogram equalization, histogram stretching and median filter. J Med Eng Technol 2011; 35: 103-108.
    • (2011) J Med Eng Technol , vol.35 , pp. 103-108
    • Langarizadeh, M.1    Mahmud, R.2    Ramli, A.R.3
  • 27
    • 84924763000 scopus 로고    scopus 로고
    • A stationary wavelet entropy-based clustering approach accurately predicts gene expression
    • Nguyen N, Vo A, Choi I, et al. A stationary wavelet entropy-based clustering approach accurately predicts gene expression. J Comput Biol 2015; 22: 236-249.
    • (2015) J Comput Biol , vol.22 , pp. 236-249
    • Nguyen, N.1    Vo, A.2    Choi, I.3
  • 28
    • 84959091369 scopus 로고    scopus 로고
    • P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference
    • Lenis G, Pilia N, Oesterlein T, et al. P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference. Biomed Eng Biomedizinische Technik 2016; 61: 37-56.
    • (2016) Biomed Eng Biomedizinische Technik , vol.61 , pp. 37-56
    • Lenis, G.1    Pilia, N.2    Oesterlein, T.3
  • 30
    • 85000692374 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine
    • Dong Z, Liu AJ, Wang S, et al. Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imag Health Inform 2015; 5: 1395-1403.
    • (2015) J Med Imag Health Inform , vol.5 , pp. 1395-1403
    • Dong, Z.1    Liu, A.J.2    Wang, S.3
  • 31
    • 84962750595 scopus 로고    scopus 로고
    • Individual trip rate transferability analysis based on a decision tree approach
    • Langerudi MF, Rashidi TH, Mohammadian A., Individual trip rate transferability analysis based on a decision tree approach. Transp Plann Technol 2016; 39: 370-388.
    • (2016) Transp Plann Technol , vol.39 , pp. 370-388
    • Langerudi, M.F.1    Rashidi, T.H.2    Mohammadian, A.3
  • 32
    • 84956697302 scopus 로고    scopus 로고
    • Snow event classification with a 2D video disdrometer - A decision tree approach
    • Bernauer F, Hurkamp K, Ruhm W, et al. Snow event classification with a 2D video disdrometer-a decision tree approach. Atmosph Res 2016; 172: 186-195.
    • (2016) Atmosph Res , vol.172 , pp. 186-195
    • Bernauer, F.1    Hurkamp, K.2    Ruhm, W.3
  • 33
    • 84901238143 scopus 로고    scopus 로고
    • Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
    • Zhang Y, Wang S, Phillips P, et al.Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowl Base Syst 2014; 64: 22-31.
    • (2014) Knowl Base Syst , vol.64 , pp. 22-31
    • Zhang, Y.1    Wang, S.2    Phillips, P.3
  • 34
    • 84961211021 scopus 로고    scopus 로고
    • Improved bounds for the randomized decision tree complexity of recursive majority
    • Magniez F, Nayak A, Santha M, et al. Improved bounds for the randomized decision tree complexity of recursive majority. Random Struct Algorithm 2016; 48: 612-638.
    • (2016) Random Struct Algorithm , vol.48 , pp. 612-638
    • Magniez, F.1    Nayak, A.2    Santha, M.3
  • 35
    • 84961710655 scopus 로고    scopus 로고
    • Decision-tree analysis of clinical data to aid diagnostic reasoning for equine laminitis: A cross-sectional study
    • Wylie CE, Shaw DJ, Verheyen KLP, et al. Decision-tree analysis of clinical data to aid diagnostic reasoning for equine laminitis: a cross-sectional study. Vet Rec 2016; 178: 8.
    • (2016) Vet Rec , vol.178 , pp. 8
    • Wylie, C.E.1    Shaw, D.J.2    Verheyen, K.L.P.3
  • 36
    • 84920022328 scopus 로고    scopus 로고
    • Comparative analysis of decision tree algorithms: ID3, C4.5 and random forest Computational intelligence in data mining
    • Berlin: Springer
    • Sathyadevan S, Nair RR., Comparative analysis of decision tree algorithms: ID3, C4.5 and random forest. In: Jain LC, Behera HS, Mandal JK, et al. Computational intelligence in data mining. Vol. 31 of Smart Innovation Systems and Technologies. Berlin: Springer, 2015, pp. 549-562.
    • (2015) 31 of Smart Innovation Systems and Technologies , pp. 549-562
    • Sathyadevan, S.1    Nair, R.R.2    Jain, L.C.3    Behera, H.S.4    Mandal, J.K.5
  • 37
    • 84963636172 scopus 로고    scopus 로고
    • Highly flexible nearest-neighbor-search associative memory with integrated k nearest neighbor classifier, configurable parallelism and dual-storage space
    • Article ID 04ef10
    • An FW, Mihara K, Yamasaki S, et al. Highly flexible nearest-neighbor-search associative memory with integrated k nearest neighbor classifier, configurable parallelism and dual-storage space. Jpn J Appl Phys 2016; 55: Article ID 04ef10.
    • (2016) Jpn J Appl Phys , vol.55
    • An, F.W.1    Mihara, K.2    Yamasaki, S.3
  • 39
    • 84959420775 scopus 로고    scopus 로고
    • A novel algorithm for scalable k-nearest neighbour graph construction
    • Park Y, Hwang H, Lee SG., A novel algorithm for scalable k-nearest neighbour graph construction. J Inform Sci 2016; 42: 274-288.
    • (2016) J Inform Sci , vol.42 , pp. 274-288
    • Park, Y.1    Hwang, H.2    Lee, S.G.3
  • 40
    • 84988733403 scopus 로고    scopus 로고
    • Design of lazy classifier based on fuzzy k-nearest neighbors and reconstruction error
    • Chon AT., Design of lazy classifier based on fuzzy k-nearest neighbors and reconstruction error. J Korean Inst Intell Syst 2010; 20: 101-108.
    • (2010) J Korean Inst Intell Syst , vol.20 , pp. 101-108
    • Chon, A.T.1
  • 41
    • 84945536443 scopus 로고    scopus 로고
    • On the stopping criteria for k-nearest neighbor in positive unlabeled time series classification problems
    • Gonzalez M, Bergmeir C, Triguero I, et al. On the stopping criteria for k-nearest neighbor in positive unlabeled time series classification problems. Inform Sci 2016; 328: 42-59.
    • (2016) Inform Sci , vol.328 , pp. 42-59
    • Gonzalez, M.1    Bergmeir, C.2    Triguero, I.3
  • 42
    • 84964319918 scopus 로고    scopus 로고
    • Character classification framework based on support vector machine and k-nearest neighbour schemes
    • Siriteerakul T, Boonjing V, Gullayanon R., Character classification framework based on support vector machine and k-nearest neighbour schemes. Scienceasia 2016; 42: 46-51.
    • (2016) Scienceasia , vol.42 , pp. 46-51
    • Siriteerakul, T.1    Boonjing, V.2    Gullayanon, R.3
  • 43
    • 84950295459 scopus 로고    scopus 로고
    • Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets
    • Almasi ON, Rouhani M,. Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets. Turk J Electr Eng Comput Sci 2016; 24: 219-233.
    • (2016) Turk J Electr Eng Comput Sci , vol.24 , pp. 219-233
    • Almasi, O.N.1    Rouhani, M.2
  • 44
    • 84948461606 scopus 로고    scopus 로고
    • Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine
    • Article ID 716
    • Yang X-J, Dong Z-C, Liu G, et al. Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus 2015; 4: Article ID 716.
    • (2015) SpringerPlus , vol.4
    • Yang, X.-J.1    Dong, Z.-C.2    Liu, G.3
  • 45
    • 84958174208 scopus 로고    scopus 로고
    • A second-order cone programming formulation for nonparallel hyperplane support vector machine
    • Carrasco M, Lopez J, Maldonado S., A second-order cone programming formulation for nonparallel hyperplane support vector machine. Exp Syst Appl 2016; 54: 95-104.
    • (2016) Exp Syst Appl , vol.54 , pp. 95-104
    • Carrasco, M.1    Lopez, J.2    Maldonado, S.3
  • 46
    • 84961956410 scopus 로고    scopus 로고
    • Multi-class support vector machine classifiers using intrinsic and penalty graphs
    • Iosifidis A, Gabbouj M., Multi-class support vector machine classifiers using intrinsic and penalty graphs. Pattern Recognit 2016; 55: 231-246.
    • (2016) Pattern Recognit , vol.55 , pp. 231-246
    • Iosifidis, A.1    Gabbouj, M.2
  • 47
    • 84946056461 scopus 로고    scopus 로고
    • Identification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine
    • Wang S, Yang X, Zhang Y, et al. Identification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine. Entropy 2015; 17: 6663-6682.
    • (2015) Entropy , vol.17 , pp. 6663-6682
    • Wang, S.1    Yang, X.2    Zhang, Y.3
  • 48
    • 84962209543 scopus 로고    scopus 로고
    • Comparing support vector machine contextual approaches for urban area classification
    • Negri RG, Dutra LV, Sant'Anna SJS,. Comparing support vector machine contextual approaches for urban area classification. Remote Sens Lett 2016; 7: 485-494.
    • (2016) Remote Sens Lett , vol.7 , pp. 485-494
    • Negri, R.G.1    Dutra, L.V.2    Sant'Anna, S.J.S.3
  • 49
    • 84947939480 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine
    • Zhang Y-D, Chen S, Wang S-H, et al. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int J Imag Syst Technol 2015; 25: 317-327.
    • (2015) Int J Imag Syst Technol , vol.25 , pp. 317-327
    • Zhang, Y.-D.1    Chen, S.2    Wang, S.-H.3
  • 50
    • 84874403630 scopus 로고    scopus 로고
    • Coping with unbalanced class data sets in oral absorption models
    • Newby D, Freitas AA, Ghafourian T., Coping with unbalanced class data sets in oral absorption models. J Chem Inform Model 2013; 53: 461-474.
    • (2013) J Chem Inform Model , vol.53 , pp. 461-474
    • Newby, D.1    Freitas, A.A.2    Ghafourian, T.3
  • 51
    • 51849154226 scopus 로고    scopus 로고
    • Optimal subspace dimensionality for k-nearest-neighbor queries on clustered and dimensionality reduced datasets with SVD
    • Thomasian A, Li Y, Zhang LJ., Optimal subspace dimensionality for k-nearest-neighbor queries on clustered and dimensionality reduced datasets with SVD. Multimedia Tool Appl 2008; 40: 241-259.
    • (2008) Multimedia Tool Appl , vol.40 , pp. 241-259
    • Thomasian, A.1    Li, Y.2    Zhang, L.J.3
  • 52
    • 84871406177 scopus 로고    scopus 로고
    • K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control
    • Porta A, Castiglioni P, Bari V, et al. K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiol Meas 2013; 34: 17-33.
    • (2013) Physiol Meas , vol.34 , pp. 17-33
    • Porta, A.1    Castiglioni, P.2    Bari, V.3
  • 53
    • 84908404938 scopus 로고    scopus 로고
    • Training of support vector machine with the use of multivariate normalization
    • Lopez FJM, Puertas SM, Arriaza JAT., Training of support vector machine with the use of multivariate normalization. Appl Soft Comput 2014; 24: 1105-1111.
    • (2014) Appl Soft Comput , vol.24 , pp. 1105-1111
    • Lopez, F.J.M.1    Puertas, S.M.2    Arriaza, J.A.T.3
  • 54
    • 84957695003 scopus 로고    scopus 로고
    • A k-nearest neighbor classification of hERG K+ channel blockers
    • Chavan S, Abdelaziz A, Wiklander JG, et al. A k-nearest neighbor classification of hERG K+ channel blockers. J Comput Aid Mol Des 2016; 30: 229-236.
    • (2016) J Comput Aid Mol des , vol.30 , pp. 229-236
    • Chavan, S.1    Abdelaziz, A.2    Wiklander, J.G.3
  • 55
    • 84953426174 scopus 로고    scopus 로고
    • An efficient regularized k-nearest neighbor based weighted twin support vector regression
    • Tanveer M, Shubham K, Aldhaifallah M, et al. An efficient regularized k-nearest neighbor based weighted twin support vector regression. Knowl Base Syst 2016; 94: 70-87.
    • (2016) Knowl Base Syst , vol.94 , pp. 70-87
    • Tanveer, M.1    Shubham, K.2    Aldhaifallah, M.3
  • 56
    • 68249083234 scopus 로고    scopus 로고
    • Pattern recognition via PCNN and Tsallis entropy
    • Wu L., Pattern recognition via PCNN and Tsallis entropy. Sensors 2008; 8: 7518-7529.
    • (2008) Sensors , vol.8 , pp. 7518-7529
    • Wu, L.1
  • 57
    • 84963620445 scopus 로고    scopus 로고
    • Correlations of multiscale entropy in the FX market
    • Stosic D, Stosic D, Ludermir T, et al. Correlations of multiscale entropy in the FX market. Phys A Stat Mech Appl 2016; 457: 52-61.
    • (2016) Phys A Stat Mech Appl , vol.457 , pp. 52-61
    • Stosic, D.1    Stosic, D.2    Ludermir, T.3
  • 58
    • 84971607430 scopus 로고    scopus 로고
    • Extreme learning machine for prediction of heat load in district heating systems
    • Sajjadi S, Shamshirband S, Alizamir M, et al. Extreme learning machine for prediction of heat load in district heating systems. Energ Build 2016; 122: 222-227.
    • (2016) Energ Build , vol.122 , pp. 222-227
    • Sajjadi, S.1    Shamshirband, S.2    Alizamir, M.3
  • 59
    • 84988719691 scopus 로고    scopus 로고
    • Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection
    • Epub ahead of print 2 March 2016. DOI: 10.1177/0037549716629227
    • Zhou X-X, Yang J-F, Sheng H, et al. Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection. Simulation. Epub ahead of print 2 March 2016. DOI: 10.1177/0037549716629227.
    • Simulation
    • Zhou, X.-X.1    Yang, J.-F.2    Sheng, H.3
  • 60
    • 70350022524 scopus 로고    scopus 로고
    • Remote-sensing image classification based on an improved probabilistic neural network
    • Zhang Y, Wu L, Naggaz N, et al. Remote-sensing image classification based on an improved probabilistic neural network. Sensors 2009; 9: 7516-7539.
    • (2009) Sensors , vol.9 , pp. 7516-7539
    • Zhang, Y.1    Wu, L.2    Naggaz, N.3
  • 61
    • 84949871128 scopus 로고    scopus 로고
    • Noise-enhanced convolutional neural networks
    • Audhkhasi K, Osoba O, Kosko B., Noise-enhanced convolutional neural networks. Neural Network 2016; 78: 15-23.
    • (2016) Neural Network , vol.78 , pp. 15-23
    • Audhkhasi, K.1    Osoba, O.2    Kosko, B.3
  • 62
    • 80053405249 scopus 로고    scopus 로고
    • Integrating Landsat TM imagery and see5 decision-tree software for identifying croplands: A case study in Shunyi District, Beijing
    • (eds). (Lecture Notes in Computer Science). Berlin: Springer Press
    • Zhao JL, Huang WJ,. Integrating Landsat TM imagery and see5 decision-tree software for identifying croplands: a case study in Shunyi District, Beijing. In: Gong Z, Luo XF, Chen JJ, et al. (eds) Web information systems and mining. (Lecture Notes in Computer Science, Vol. 6987). Berlin: Springer Press, 2011, pp. 251-258.
    • (2011) Web Information Systems and Mining , vol.6987 , pp. 251-258
    • Zhao, J.L.1    Huang, W.J.2    Gong, Z.3    Luo, X.F.4    Chen, J.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.