메뉴 건너뛰기




Volumn 46, Issue , 2015, Pages 2-10

Classification of multiple sclerosis lesions using adaptive dictionary learning

Author keywords

Adaptive dictionary learning; Computer aided diagnosis; Magnetic resonance imaging; Sparse representations

Indexed keywords

BRAIN; CEREBROSPINAL FLUID; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; COMPUTER AIDED INSTRUCTION; DIAGNOSIS; IMAGE PROCESSING; MAGNETIC RESONANCE IMAGING;

EID: 84930335593     PISSN: 08956111     EISSN: 18790771     Source Type: Journal    
DOI: 10.1016/j.compmedimag.2015.05.003     Document Type: Article
Times cited : (29)

References (37)
  • 1
    • 0032231335 scopus 로고    scopus 로고
    • Perspectives on multiple sclerosis
    • [1] Grossman, R., McGowan, J., Perspectives on multiple sclerosis. Am J Neuroradiol 19:7 (1998), 1251–1265.
    • (1998) Am J Neuroradiol , vol.19 , Issue.7 , pp. 1251-1265
    • Grossman, R.1    McGowan, J.2
  • 2
    • 3843129631 scopus 로고    scopus 로고
    • Role of magnetic resonance imaging within diagnostic criteria for multiple sclerosis
    • [2] Miller, D.H., Filippi, M., Fazekas, F., Frederiksen, J.L., Matthews, P.M., Montalban, X., et al. Role of magnetic resonance imaging within diagnostic criteria for multiple sclerosis. Ann Neurol 56:2 (2004), 273–278.
    • (2004) Ann Neurol , vol.56 , Issue.2 , pp. 273-278
    • Miller, D.H.1    Filippi, M.2    Fazekas, F.3    Frederiksen, J.L.4    Matthews, P.M.5    Montalban, X.6
  • 3
    • 84871701023 scopus 로고    scopus 로고
    • Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging
    • [3] García-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L., Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 17:1 (2013), 1–18.
    • (2013) Med Image Anal , vol.17 , Issue.1 , pp. 1-18
    • García-Lorenzo, D.1    Francis, S.2    Narayanan, S.3    Arnold, D.L.4    Collins, D.L.5
  • 4
    • 81355139056 scopus 로고    scopus 로고
    • Segmentation of multiple sclerosis lesions in brain MRI: a review of automated approaches
    • [4] Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., et al. Segmentation of multiple sclerosis lesions in brain MRI: a review of automated approaches. Inf Sci 186:1 (2012), 164–185.
    • (2012) Inf Sci , vol.186 , Issue.1 , pp. 164-185
    • Lladó, X.1    Oliver, A.2    Cabezas, M.3    Freixenet, J.4    Vilanova, J.C.5    Quiles, A.6
  • 5
    • 33845584374 scopus 로고    scopus 로고
    • Image denoising via learned dictionaries and sparse representation
    • [5] Elad, M., Aharon, M., Image denoising via learned dictionaries and sparse representation. IEEE Comput Soc Conf Comput Vis Pattern Recognit 1 (2006), 895–900.
    • (2006) IEEE Comput Soc Conf Comput Vis Pattern Recognit , vol.1 , pp. 895-900
    • Elad, M.1    Aharon, M.2
  • 6
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • [6] Mairal, J., Elad, M., Sapiro, G., Sparse representation for color image restoration. IEEE Trans Image Process 17:1 (2008), 53–69.
    • (2008) IEEE Trans Image Process , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 7
    • 77952740831 scopus 로고    scopus 로고
    • On the role of sparse and redundant representations in image processing
    • [7] Elad, M., Figueiredo, M., Ma, Y., On the role of sparse and redundant representations in image processing. Proc IEEE 98:6 (2010), 972–982.
    • (2010) Proc IEEE , vol.98 , Issue.6 , pp. 972-982
    • Elad, M.1    Figueiredo, M.2    Ma, Y.3
  • 8
    • 67349215512 scopus 로고    scopus 로고
    • Sparse modeling of textures
    • [8] Peyré, G., Sparse modeling of textures. J Math Imaging Vis 34:1 (2009), 17–31.
    • (2009) J Math Imaging Vis , vol.34 , Issue.1 , pp. 17-31
    • Peyré, G.1
  • 10
    • 82355192255 scopus 로고    scopus 로고
    • Towards robust and effective shape modeling: sparse shape composition
    • [10] Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S., Towards robust and effective shape modeling: sparse shape composition. Med Image Anal 16:1 (2012), 265–277.
    • (2012) Med Image Anal , vol.16 , Issue.1 , pp. 265-277
    • Zhang, S.1    Zhan, Y.2    Dewan, M.3    Huang, J.4    Metaxas, D.N.5    Zhou, X.S.6
  • 13
    • 84866450569 scopus 로고    scopus 로고
    • Deformable segmentation via sparse representation and dictionary learning
    • Special issue on the 2011 conference on medical image computing and computer assisted intervention
    • [13] Zhang, S., Zhan, Y., Metaxas, D.N., Deformable segmentation via sparse representation and dictionary learning. Med Image Anal 16:7 (2012), 1385–1396 Special issue on the 2011 conference on medical image computing and computer assisted intervention.
    • (2012) Med Image Anal , vol.16 , Issue.7 , pp. 1385-1396
    • Zhang, S.1    Zhan, Y.2    Metaxas, D.N.3
  • 16
    • 78349258863 scopus 로고    scopus 로고
    • Double sparsity: learning sparse dictionaries for sparse signal approximation
    • [16] Rubinstein, R., Zibulevsky, M., Elad, M., Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans Signal Process 58:3 (2010), 1553–1564.
    • (2010) IEEE Trans Signal Process , vol.58 , Issue.3 , pp. 1553-1564
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3
  • 19
    • 84875794414 scopus 로고    scopus 로고
    • Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning
    • [19] Fang, R., Chen, T., Sanelli, P.C., Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning. Med Image Anal 17:4 (2013), 417–428.
    • (2013) Med Image Anal , vol.17 , Issue.4 , pp. 417-428
    • Fang, R.1    Chen, T.2    Sanelli, P.C.3
  • 20
    • 84901690103 scopus 로고    scopus 로고
    • Improving low-dose bloodbrain barrier permeability quantification using sparse high-dose induced prior for patlak model
    • Sparse methods for signal reconstruction and medical image analysis
    • [20] Fang, R., Karlsson, K., Chen, T., Sanelli, P.C., Improving low-dose bloodbrain barrier permeability quantification using sparse high-dose induced prior for patlak model. Med Image Anal 18:6 (2014), 866–880 Sparse methods for signal reconstruction and medical image analysis.
    • (2014) Med Image Anal , vol.18 , Issue.6 , pp. 866-880
    • Fang, R.1    Karlsson, K.2    Chen, T.3    Sanelli, P.C.4
  • 22
    • 84876313836 scopus 로고    scopus 로고
    • Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling
    • [22] Tong, T., Wolz, R., Coup, P., Hajnal, J.V., Rueckert, D., Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. Neuroimage 76:0 (2013), 11–23.
    • (2013) Neuroimage , vol.76 , pp. 11-23
    • Tong, T.1    Wolz, R.2    Coup, P.3    Hajnal, J.V.4    Rueckert, D.5
  • 24
    • 84861121463 scopus 로고    scopus 로고
    • An MDL framework for sparse coding and dictionary learning
    • [24] Ramirez, I., Sapiro, G., An MDL framework for sparse coding and dictionary learning. IEEE Trans Signal Process 60:6 (2012), 2913–2927.
    • (2012) IEEE Trans Signal Process , vol.60 , Issue.6 , pp. 2913-2927
    • Ramirez, I.1    Sapiro, G.2
  • 26
    • 0036826508 scopus 로고    scopus 로고
    • Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis
    • [26] Zijdenbos, A., Forghani, R., Evans, A., Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21:10 (2002), 1280–1291.
    • (2002) IEEE Trans Med Imaging , vol.21 , Issue.10 , pp. 1280-1291
    • Zijdenbos, A.1    Forghani, R.2    Evans, A.3
  • 27
    • 0027842081 scopus 로고
    • Matching pursuits with time–frequency dictionaries
    • [27] Mallat, S., Zhang, Z., Matching pursuits with time–frequency dictionaries. IEEE Trans Signal Process 41:12 (1993), 3397–3415.
    • (1993) IEEE Trans Signal Process , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 30
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
    • [30] Aharon, M., Elad, M., Bruckstein, A., K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54:11 (2006), 4311–4322.
    • (2006) IEEE Trans Signal Process , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 34
    • 41649106122 scopus 로고    scopus 로고
    • Optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
    • [34] Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C., Optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27:4 (2008), 425–441.
    • (2008) IEEE Trans Med Imaging , vol.27 , Issue.4 , pp. 425-441
    • Coupe, P.1    Yger, P.2    Prima, S.3    Hellier, P.4    Kervrann, C.5    Barillot, C.6
  • 35
    • 0030088712 scopus 로고    scopus 로고
    • Multi-modal volume registration by maximization of mutual information
    • [35] Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R., Multi-modal volume registration by maximization of mutual information. Med Image Anal 1:1 (1996), 35–51.
    • (1996) Med Image Anal , vol.1 , Issue.1 , pp. 35-51
    • Wells, W.1    Viola, P.2    Atsumi, H.3    Nakajima, S.4    Kikinis, R.5
  • 36
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • [36] Smith, S., Fast robust automated brain extraction. Hum Brain Mapp 17:3 (2002), 143–155.
    • (2002) Hum Brain Mapp , vol.17 , Issue.3 , pp. 143-155
    • Smith, S.1
  • 37
    • 20444501009 scopus 로고    scopus 로고
    • Unified segmentation
    • [37] Ashburner, J., Friston, K., Unified segmentation. Neuroimage 26:3 (2005), 839–851.
    • (2005) Neuroimage , vol.26 , Issue.3 , pp. 839-851
    • Ashburner, J.1    Friston, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.