메뉴 건너뛰기




Volumn 54, Issue , 2016, Pages 95-104

A second-order cone programming formulation for nonparallel hyperplane support vector machine

Author keywords

Nonparallel hyperplane SVM; Second order cone programming; Support vector classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; EXPERT SYSTEMS; GEOMETRY; INTELLIGENT SYSTEMS; OPTIMIZATION;

EID: 84958174208     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2016.01.044     Document Type: Article
Times cited : (23)

References (38)
  • 1
    • 84905266057 scopus 로고    scopus 로고
    • Dynamic churn prediction framework with more effective use of rare event data: the case of private banking
    • Ali O.G., and Aritürk U. Dynamic churn prediction framework with more effective use of rare event data: the case of private banking Expert Systems with Applications 41 17 2014 7889 7903
    • (2014) Expert Systems with Applications , vol.41 , Issue.17 , pp. 7889-7903
    • Ali, O.G.1    Aritürk, U.2
  • 3
    • 77955575625 scopus 로고    scopus 로고
    • Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and support vector machines
    • Alvarez F., López J., and Ramírez C.H. Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and support vector machines Optimization Methods Software 25 6 2010 859 881
    • (2010) Optimization Methods Software , vol.25 , Issue.6 , pp. 859-881
    • Alvarez, F.1    López, J.2    Ramírez, C.H.3
  • 5
    • 84897645673 scopus 로고    scopus 로고
    • A novel feature selection method for twin support vector machine
    • Bai L., Wang Z., Shao Y.-H., and Deng N.-Y. A novel feature selection method for twin support vector machine Knowledge-Based Systems 59 0 2014 1 8
    • (2014) Knowledge-Based Systems , vol.59 , pp. 1-8
    • Bai, L.1    Wang, Z.2    Shao, Y.-H.3    Deng, N.-Y.4
  • 6
    • 84940459088 scopus 로고    scopus 로고
    • Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, lbp and svm
    • Borges W., Corrêa A., Cardoso A., and Gattass M. Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, lbp and svm Expert Systems with Applications 42 22 2015 8911 8928
    • (2015) Expert Systems with Applications , vol.42 , Issue.22 , pp. 8911-8928
    • Borges, W.1    Corrêa, A.2    Cardoso, A.3    Gattass, M.4
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 29144477149 scopus 로고    scopus 로고
    • An efficient support vector machine learning method with second-order cone programming for large-scale problems
    • Debnath R., Muramatsu M., and Takahashi H. An efficient support vector machine learning method with second-order cone programming for large-scale problems Applied Intelligence 23 2005 219 239
    • (2005) Applied Intelligence , vol.23 , pp. 219-239
    • Debnath, R.1    Muramatsu, M.2    Takahashi, H.3
  • 13
    • 33744798398 scopus 로고    scopus 로고
    • Robust convex quadratically constrained programs
    • Goldfarb D., and Iyengar G. Robust convex quadratically constrained programs Mathematical Programming 97 3 2003 495 515
    • (2003) Mathematical Programming , vol.97 , Issue.3 , pp. 495-515
    • Goldfarb, D.1    Iyengar, G.2
  • 16
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Kumar M., and Gopal M. Least squares twin support vector machines for pattern classification Expert Systems with Applications 36 2009 7535 7543
    • (2009) Expert Systems with Applications , vol.36 , pp. 7535-7543
    • Kumar, M.1    Gopal, M.2
  • 18
    • 84906691312 scopus 로고    scopus 로고
    • Feature selection for high-dimensional class-imbalanced data sets using support vector machines
    • Maldonado S., Famili F., and Weber R. Feature selection for high-dimensional class-imbalanced data sets using support vector machines Information Sciences 286 2014 228 246
    • (2014) Information Sciences , vol.286 , pp. 228-246
    • Maldonado, S.1    Famili, F.2    Weber, R.3
  • 19
    • 84897091731 scopus 로고    scopus 로고
    • Alternative second-order cone programming formulations for support vector classification
    • Maldonado S., and López J. Alternative second-order cone programming formulations for support vector classification Information Sciences 268 2014 328 341
    • (2014) Information Sciences , vol.268 , pp. 328-341
    • Maldonado, S.1    López, J.2
  • 20
    • 84893704508 scopus 로고    scopus 로고
    • Imbalanced data classification using second-order cone programming support vector machines
    • Maldonado S., and López J. Imbalanced data classification using second-order cone programming support vector machines Pattern Recognition 47 2014 2070 2079
    • (2014) Pattern Recognition , vol.47 , pp. 2070-2079
    • Maldonado, S.1    López, J.2
  • 21
    • 84947562632 scopus 로고    scopus 로고
    • An embedded feature selection approach for support vector classification via second-order cone programming
    • Maldonado S., and López J. An embedded feature selection approach for support vector classification via second-order cone programming Intelligent Data Analysis 19 6 2015 1233 1257
    • (2015) Intelligent Data Analysis , vol.19 , Issue.6 , pp. 1233-1257
    • Maldonado, S.1    López, J.2
  • 22
    • 77958106713 scopus 로고    scopus 로고
    • Kernel-penalized SVM for feature selection
    • Maldonado S., Weber R., and Basak J. Kernel-penalized SVM for feature selection Information Sciences 181 1 2011 115 128
    • (2011) Information Sciences , vol.181 , Issue.1 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 23
    • 84958194719 scopus 로고
    • Nonlinear Programming Olvi L. Mangasarian
    • Society for Industrial and Applied Mathematics
    • Mangasarian O.L. Nonlinear Programming Olvi L. Mangasarian Classics in Applied Mathematics 1994 Society for Industrial and Applied Mathematics 236 10.1137/1013044
    • (1994) Classics in Applied Mathematics , pp. 236
    • Mangasarian, O.L.1
  • 24
    • 0001500115 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type, and their connection with the theory of integral equations Philosophical Transactions of the Royal Society of London 209 1909 415 446
    • (1909) Philosophical Transactions of the Royal Society of London , vol.209 , pp. 415-446
    • Mercer, J.1
  • 26
    • 77957841364 scopus 로고    scopus 로고
    • Least squares twin support vector hypersphere (LS-TSVH) for pattern recognition
    • Peng X. Least squares twin support vector hypersphere (LS-TSVH) for pattern recognition Expert Systems with Applications 37 12 2010 8371 8378
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8371-8378
    • Peng, X.1
  • 28
    • 84866023118 scopus 로고    scopus 로고
    • Robust twin support vector machine for pattern classification
    • Qi Z., Tian Y., and Shi Y. Robust twin support vector machine for pattern classification Pattern Recognition 46 1 2013 305 316
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 305-316
    • Qi, Z.1    Tian, Y.2    Shi, Y.3
  • 29
    • 84950274360 scopus 로고    scopus 로고
    • An automatic apnea screening algorithm for children
    • Ríos S., and Erazo L. An automatic apnea screening algorithm for children Expert Systems with Applications 48 2016 42 54
    • (2016) Expert Systems with Applications , vol.48 , pp. 42-54
    • Ríos, S.1    Erazo, L.2
  • 32
    • 84894906006 scopus 로고    scopus 로고
    • Nonparallel hyperplane support vector machine for binary classification problems
    • Shao Y., Chen W., and Deng N. Nonparallel hyperplane support vector machine for binary classification problems Information Sciences 263 0 2014 22 35
    • (2014) Information Sciences , vol.263 , pp. 22-35
    • Shao, Y.1    Chen, W.2    Deng, N.3
  • 34
    • 0033296299 scopus 로고    scopus 로고
    • Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones
    • Special issue on Interior Point Methods (CD supplement with software)
    • Sturm J. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones Optimization Methods and Software 11 12 1999 625 653 Special issue on Interior Point Methods (CD supplement with software).
    • (1999) Optimization Methods and Software , vol.11 , Issue.12 , pp. 625-653
    • Sturm, J.1
  • 35
    • 84861589024 scopus 로고    scopus 로고
    • A weighted twin support vector regression
    • Xu Y., and Wang L. A weighted twin support vector regression Knowledge-Based Systems 33 2012 92 101
    • (2012) Knowledge-Based Systems , vol.33 , pp. 92-101
    • Xu, Y.1    Wang, L.2
  • 36
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • Yang K., Cai Z., Li J., and Lin G. A stable gene selection in microarray data analysis BMC Bioinformatics 7 2006 228
    • (2006) BMC Bioinformatics , vol.7 , pp. 228
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.4
  • 37
    • 84922559393 scopus 로고    scopus 로고
    • Maximum margin classification based on flexible convex hulls
    • Zeng M., Yang Y., Zheng J., and Cheng J. Maximum margin classification based on flexible convex hulls Neurocomputing 149 B 2015 957 965
    • (2015) Neurocomputing , vol.149 , Issue.B , pp. 957-965
    • Zeng, M.1    Yang, Y.2    Zheng, J.3    Cheng, J.4
  • 38
    • 33846021948 scopus 로고    scopus 로고
    • Second-order cone programming formulations for robust multiclass classification
    • Zhong P., and Fukushima M. Second-order cone programming formulations for robust multiclass classification Neural Computation 19 2007 258 282
    • (2007) Neural Computation , vol.19 , pp. 258-282
    • Zhong, P.1    Fukushima, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.