메뉴 건너뛰기




Volumn 152, Issue , 2015, Pages 41-58

Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN MAPPING; COMPUTER AIDED DIAGNOSIS; ECOLOGY; ENTROPY; HEURISTIC ALGORITHMS; MAGNETIC LEVITATION VEHICLES; MAGNETIC RESONANCE IMAGING; SCANNING;

EID: 84937437761     PISSN: 10704698     EISSN: 15598985     Source Type: Journal    
DOI: 10.2528/PIER15040602     Document Type: Article
Times cited : (99)

References (57)
  • 1
    • 84902184683 scopus 로고    scopus 로고
    • Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging
    • Goh, S., et al., “Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging,” JAMA Psychiatry, Vol. 71, No. 6, 665-671, 2014.
    • (2014) JAMA Psychiatry , vol.71 , Issue.6 , pp. 665-671
    • Goh, S.1
  • 2
    • 84885597453 scopus 로고    scopus 로고
    • An MR brain images classifier system via particle swarm optimization and kernel support vector machine
    • Zhang, Y., et al., “An MR brain images classifier system via particle swarm optimization and kernel support vector machine,” The Scientific World Journal, Vol. 2013, 9, 2013.
    • (2013) The Scientific World Journal , vol.2013 , pp. 9
    • Zhang, Y.1
  • 3
    • 58149512473 scopus 로고    scopus 로고
    • Second order fuzzy measure and weighted co-occurrence matrix for segmentation of brain MR images
    • Maji, P., M. K. Kundu, and B. Chanda, “Second order fuzzy measure and weighted co-occurrence matrix for segmentation of brain MR images,” Fundamenta Informaticae, Vol. 88, Nos. 12, 161-176, 2008.
    • (2008) Fundamenta Informaticae , vol.88 , Issue.12 , pp. 161-176
    • Maji, P.1    Kundu, M.K.2    Chanda, B.3
  • 4
    • 84897116509 scopus 로고    scopus 로고
    • Brain tumor detection and segmentation in a CRF (Conditional random fields) framework with pixel-pairwise affinity and superpixel-level features
    • Wu, W., et al., “Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features,” International Journal of Computer Assisted Radiology and Surgery, Vol. 9, No. 2, 241-253, Mar. 2014.
    • (2014) International Journal of Computer Assisted Radiology and Surgery , vol.9 , Issue.2 , pp. 241-253
    • Wu, W.1
  • 5
    • 33745255698 scopus 로고    scopus 로고
    • Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
    • Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, “Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network,” Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
    • (2006) Biomedical Signal Processing and Control , vol.1 , Issue.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.M.2    Jagannathan, N.R.3
  • 6
    • 33847043225 scopus 로고    scopus 로고
    • A Slantlet transform based intelligent system for magnetic resonance brain image classification
    • Maitra, M. and A. Chatterjee, “A Slantlet transform based intelligent system for magnetic resonance brain image classification,” Biomedical Signal Processing and Control, Vol. 1, No. 4, 299-306, Oct. 2006.
    • (2006) Biomedical Signal Processing and Control , vol.1 , Issue.4 , pp. 299-306
    • Maitra, M.1    Chatterjee, A.2
  • 7
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid intelligent techniques for MRI brain images classification
    • El-Dahshan, E. S. A., T. Hosny, and A. B. M. Salem, “Hybrid intelligent techniques for MRI brain images classification,” Digital Signal Processing, Vol. 20, No. 2, 433-441, Mar. 2010.
    • (2010) Digital Signal Processing , vol.20 , Issue.2 , pp. 433-441
    • El-Dahshan, E.1    Hosny, T.2    Salem, A.B.3
  • 8
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification by an improved artificial bee colony algorithm
    • Zhang, Y., L. Wu, and S. Wang, “Magnetic resonance brain image classification by an improved artificial bee colony algorithm,” Progress In Electromagnetics Research, Vol. 116, 65-79, 2011.
    • (2011) Progress in Electromagnetics Research , vol.116 , pp. 65-79
    • Zhang, Y.1    Wu, L.2    Wang, S.3
  • 9
    • 79953706565 scopus 로고    scopus 로고
    • A hybrid method for MRI brain image classification
    • Zhang, Y., et al., “A hybrid method for MRI brain image classification,” Expert Systems with Applications, Vol. 38, No. 8, 10049-10053, 2011.
    • (2011) Expert Systems with Applications , vol.38 , Issue.8 , pp. 10049-10053
    • Zhang, Y.1
  • 10
    • 79960338927 scopus 로고    scopus 로고
    • Brain tissue classification of MR images using fast fourier transform based expectation-maximization Gaussian mixture model
    • Springer
    • Ramasamy, R. and P. Anandhakumar, “Brain tissue classification of MR images using fast fourier transform based expectation-maximization Gaussian mixture model,” Advances in Computing and Information Technology, 387-398, Springer, 2011.
    • (2011) Advances in Computing and Information Technology , pp. 387-398
    • Ramasamy, R.1    Anandhakumar, P.2
  • 11
    • 84866525215 scopus 로고    scopus 로고
    • An MR brain images classifier via principal component analysis and kernel support vector machine
    • Zhang, Y. and L. Wu, “An MR brain images classifier via principal component analysis and kernel support vector machine,” Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.
    • (2012) Progress in Electromagnetics Research , vol.130 , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 12
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha, M., K. P. Joseph, and A. T. Mathew, “Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network,” Pattern Recognition Letters, Vol. 34, No. 16, 2151-2156, Dec. 2013.
    • (2013) Pattern Recognition Letters , vol.34 , Issue.16 , pp. 2151-2156
    • Saritha, M.1    Joseph, K.P.2    Mathew, A.T.3
  • 13
    • 84929627799 scopus 로고    scopus 로고
    • Effect of spider-web-plot in MR brain image classification
    • Zhang, Y., et al., “Effect of spider-web-plot in MR brain image classification,” Pattern Recognition Letters, Vol. 62, 14-16, Sep. 1, 2015.
    • (2015) Pattern Recognition Letters , vol.62 , pp. 14-16
    • Zhang, Y.1
  • 14
    • 84873725415 scopus 로고    scopus 로고
    • Brain MR image classification using multiscale geometric analysis of ripplet
    • Das, S., M. Chowdhury, and M. K. Kundu, “Brain MR image classification using multiscale geometric analysis of ripplet,” Progress In Electromagnetics Research, Vol. 137, 1-17, 2013.
    • (2013) Progress in Electromagnetics Research , vol.137 , pp. 1-17
    • Das, S.1    Chowdhury, M.2    Kundu, M.K.3
  • 15
    • 84884870289 scopus 로고    scopus 로고
    • Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series
    • Kalbkhani, H., M. G. Shayesteh, and B. Zali-Vargahan, “Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series,” Biomedical Signal Processing and Control, Vol. 8, No. 6, 909-919, 2013.
    • (2013) Biomedical Signal Processing and Control , vol.8 , Issue.6 , pp. 909-919
    • Kalbkhani, H.1    Shayesteh, M.G.2    Zali-Vargahan, B.3
  • 16
    • 84893083296 scopus 로고    scopus 로고
    • Segmentation and classification of brain CT images using combined wavelet statistical texture features
    • Padma, A. and R. Sukanesh, “Segmentation and classification of brain CT images using combined wavelet statistical texture features,” Arabian Journal for Science and Engineering, Vol. 39, No. 2, 767-776, Feb. 2014.
    • (2014) Arabian Journal for Science and Engineering , vol.39 , Issue.2 , pp. 767-776
    • Padma, A.1    Sukanesh, R.2
  • 17
    • 84899008824 scopus 로고    scopus 로고
    • Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
    • El-Dahshan, E. S. A., et al., “Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm,” Expert Systems with Applications, Vol. 41, No. 11, 5526-5545, Sep. 2014.
    • (2014) Expert Systems with Applications , vol.41 , Issue.11 , pp. 5526-5545
    • El-Dahshan, E.1
  • 18
    • 84930332968 scopus 로고    scopus 로고
    • Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)
    • Zhang, Y., et al., “Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM),” Entropy, Vol. 17, No. 4, 1795-1813, 2015.
    • (2015) Entropy , vol.17 , Issue.4 , pp. 1795-1813
    • Zhang, Y.1
  • 19
    • 84944456448 scopus 로고    scopus 로고
    • Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier
    • F. Ortuno and I. Rojas, Eds., Springer International Publishing, Granada, Spain
    • Zhou, X., et al., “Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier,” Bioinformatics and Biomedical Engineering, Vol. 9043, 201-209, F. Ortuno and I. Rojas, Eds., Springer International Publishing, Granada, Spain, 2015.
    • (2015) Bioinformatics and Biomedical Engineering , vol.9043 , pp. 201-209
    • Zhou, X.1
  • 20
    • 84920501690 scopus 로고    scopus 로고
    • Combining tissue segmentation and neural network for brain tumor detection
    • Damodharan, S. and D. Raghavan, “Combining tissue segmentation and neural network for brain tumor detection,” International Arab Journal of Information Technology, Vol. 12, No. 1, 42-52, Jan. 2015.
    • (2015) International Arab Journal of Information Technology , vol.12 , Issue.1 , pp. 42-52
    • Damodharan, S.1    Raghavan, D.2
  • 21
    • 84928688048 scopus 로고    scopus 로고
    • Automated classification of brain images using wavelet-energy and biogeographybased optimization
    • Yang, G., et al., “Automated classification of brain images using wavelet-energy and biogeographybased optimization,” Multimedia Tools and Applications, 1-17, May 1, 2015.
    • (2015) Multimedia Tools and Applications, 1-17, May , pp. 1
    • Yang, G.1
  • 23
    • 84923171982 scopus 로고    scopus 로고
    • A simple and intelligent approach for brain MRI classification
    • Nazir, M., F. Wahid, and S. A. Khan, “A simple and intelligent approach for brain MRI classification,” Journal of Intelligent & Fuzzy Systems, Vol. 28, No. 3, 1127-1135, 2015.
    • (2015) Journal of Intelligent & Fuzzy Systems , vol.28 , Issue.3 , pp. 1127-1135
    • Nazir, M.1    Wahid, F.2    Khan, S.A.3
  • 24
    • 84930681763 scopus 로고    scopus 로고
    • Detection of subjects and brain regions related to Alzheimers disease using 3D MRI scans based on eigenbrain and machine learning,”
    • Zhang, Y., et al., “Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning,” Frontiers in Computational Neuroscience, Vol. 66, No. 9, 1-15, 2015.
    • (2015) Frontiers in Computational Neuroscience , vol.66 , Issue.9 , pp. 1-15
    • Zhang, Y.1
  • 25
    • 84922461060 scopus 로고    scopus 로고
    • Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor
    • Harikumar, R. and B. V. Kumar, “Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor,” International Journal of Imaging Systems and Technology, Vol. 25, No. 1, 33-40, Mar. 2015.
    • (2015) International Journal of Imaging Systems and Technology , vol.25 , Issue.1 , pp. 33-40
    • Harikumar, R.1    Kumar, B.V.2
  • 26
    • 84929610466 scopus 로고    scopus 로고
    • Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection
    • Wang, S., et al., “Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection,” International Journal of Imaging Systems and Technology, Vol. 25, No. 2, 153-164, 2015.
    • (2015) International Journal of Imaging Systems and Technology , vol.25 , Issue.2 , pp. 153-164
    • Wang, S.1
  • 27
    • 84931263154 scopus 로고    scopus 로고
    • Detection of Alzheimers disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC,”
    • Zhang, Y., et al., “Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC,” Biomedical Signal Processing and Control, Vol. 21, 58-73, Aug. 2015.
    • (2015) Biomedical Signal Processing and Control , vol.21 , pp. 58-73
    • Zhang, Y.1
  • 28
    • 60249085301 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction
    • Yildiz, A., et al., “Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction,” Expert Systems with Applications, Vol. 36, No. 4, 7390-7399, May 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7390-7399
    • Yildiz, A.1
  • 29
    • 49549089775 scopus 로고    scopus 로고
    • Weights optimization of neural network via improved BCO approach
    • Zhang, Y.-D. and L. Wu, “Weights optimization of neural network via improved BCO approach,” Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
    • (2008) Progress in Electromagnetics Research , vol.83 , pp. 185-198
    • Zhang, Y.-D.1    Wu, L.2
  • 30
    • 84924598881 scopus 로고    scopus 로고
    • A novel demodulation system based on continuous wavelet transform
    • Fang, L., L. Wu, and Y. Zhang, “A novel demodulation system based on continuous wavelet transform,” Mathematical Problems in Engineering, Vol. 2015, 9, 2015.
    • (2015) Mathematical Problems in Engineering , vol.2015 , pp. 9
    • Fang, L.1    Wu, L.2    Zhang, Y.3
  • 31
    • 84924086238 scopus 로고    scopus 로고
    • Wavelet kernel entropy component analysis with application to industrial process monitoring
    • Yang, Y. H., et al., “Wavelet kernel entropy component analysis with application to industrial process monitoring,” Neurocomputing, Vol. 147, 395-402, Jan. 2015.
    • (2015) Neurocomputing , vol.147 , pp. 395-402
    • Yang, Y.H.1
  • 33
    • 84904625723 scopus 로고    scopus 로고
    • Improved radio frequency identification indoor localization method via radial basis function neural network
    • Guo, D., et al., “Improved radio frequency identification indoor localization method via radial basis function neural network,” Mathematical Problems in Engineering, 2014.
    • (2014) Mathematical Problems in Engineering
    • Guo, D.1
  • 34
    • 84893829347 scopus 로고    scopus 로고
    • An incremental learning preprocessor for feed-forward neural network
    • Fuangkhon, P., “An incremental learning preprocessor for feed-forward neural network,” Artificial Intelligence Review, Vol. 41, No. 2, 183-210, Feb. 2014.
    • (2014) Artificial Intelligence Review , vol.41 , Issue.2 , pp. 183-210
    • Fuangkhon, P.1
  • 35
    • 83955165320 scopus 로고    scopus 로고
    • Artificial neural network model for prediction of cold spot temperature in retort sterilization of starch-based foods
    • Llave, Y. A., T. Hagiwara, and T. Sakiyama, “Artificial neural network model for prediction of cold spot temperature in retort sterilization of starch-based foods,” Journal of Food Engineering, Vol. 109, No. 3, 553-560, 2012.
    • (2012) Journal of Food Engineering , vol.109 , Issue.3 , pp. 553-560
    • Llave, Y.A.1    Hagiwara, T.2    Sakiyama, T.3
  • 36
    • 59849122121 scopus 로고    scopus 로고
    • Applications of information theory, genetic algorithms, and neural models to predict oil flow
    • Ludwig, Jr, O., et al., “Applications of information theory, genetic algorithms, and neural models to predict oil flow,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 7, 2870-2885, 2009.
    • (2009) Communications in Nonlinear Science and Numerical Simulation , vol.14 , Issue.7 , pp. 2870-2885
    • Ludwig, O.1
  • 37
    • 84919787953 scopus 로고    scopus 로고
    • Prediction of the binary density of the ionic liquids plus water using backpropagated feed forward artificial neural network
    • Shojaee, S. A., et al., “Prediction of the binary density of the ionic liquids plus water using backpropagated feed forward artificial neural network,” Chemical Industry & Chemical Engineering Quarterly, Vol. 20, No. 3, 325-338, Jul.-Sep. 2014.
    • (2014) Chemical Industry & Chemical Engineering Quarterly , vol.20 , Issue.3 , pp. 325-338
    • Shojaee, S.A.1
  • 38
    • 84904467844 scopus 로고    scopus 로고
    • Impact of learning rate and momentum factor in the performance of back-propagation neural network to identify internal dynamics of chaotic motion
    • Karmakar, S., G. Shrivastava, and M. K. Kowar, “Impact of learning rate and momentum factor in the performance of back-propagation neural network to identify internal dynamics of chaotic motion,” Kuwait Journal of Science, Vol. 41, No. 2, 151-174, May 2014.
    • (2014) Kuwait Journal of Science , vol.41 , Issue.2 , pp. 151-174
    • Karmakar, S.1    Shrivastava, G.2    Kowar, M.K.3
  • 39
    • 84907546172 scopus 로고    scopus 로고
    • Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks
    • Chandwani, V., V. Agrawal, and R. Nagar, “Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks,” Expert Systems with Applications, Vol. 42, No. 2, 885-893, Feb. 2015.
    • (2015) Expert Systems with Applications , vol.42 , Issue.2 , pp. 885-893
    • Chandwani, V.1    Agrawal, V.2    Nagar, R.3
  • 40
    • 84903280064 scopus 로고    scopus 로고
    • Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process
    • Manoochehri, M. and F. Kolahan, “Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process,” International Journal of Advanced Manufacturing Technology, Vol. 73, Nos. 14, 241-249, Jul. 2014.
    • (2014) International Journal of Advanced Manufacturing Technology , vol.73 , Issue.14 , pp. 241-249
    • Manoochehri, M.1    Kolahan, F.2
  • 41
    • 84920252463 scopus 로고    scopus 로고
    • An efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecasting
    • Awan, S. M., et al., “An efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecasting,” Neural Computing & Applications, Vol. 25, Nos. 7-8, 1967-1978, Dec. 2014.
    • (2014) Neural Computing & Applications , vol.25 , Issue.7-8 , pp. 1967-1978
    • Awan, S.M.1
  • 43
    • 84908308703 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
    • Momeni, E., et al., “Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks,” Measurement, Vol. 60, 50-63, Jan. 2015.
    • (2015) Measurement , vol.60 , pp. 50-63
    • Momeni, E.1
  • 44
    • 84901653528 scopus 로고    scopus 로고
    • Adaptive biogeography based predator-prey optimization technique for optimal power flow
    • Christy, A. A. and P. Raj, “Adaptive biogeography based predator-prey optimization technique for optimal power flow,” International Journal of Electrical Power & Energy Systems, Vol. 62, 344-352, Nov. 2014.
    • (2014) International Journal of Electrical Power & Energy Systems , vol.62 , pp. 344-352
    • Christy, A.A.1    Raj, P.2
  • 45
    • 84905364371 scopus 로고    scopus 로고
    • Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems
    • Guo, W. A., et al., “Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems,” Engineering Optimization, Vol. 46, No. 11, 1465-1484, Nov. 2014.
    • (2014) Engineering Optimization , vol.46 , Issue.11 , pp. 1465-1484
    • Guo, W.A.1
  • 46
    • 79957441310 scopus 로고    scopus 로고
    • A probabilistic analysis of a simplified biogeography-based optimization algorithm
    • Simon, D., “A probabilistic analysis of a simplified biogeography-based optimization algorithm,” Evolutionary Computation, Vol. 19, No. 2, 167-188, Summer 2011.
    • (2011) Evolutionary Computation , vol.19 , Issue.2 , pp. 167-188
    • Simon, D.1
  • 47
    • 84892614873 scopus 로고    scopus 로고
    • “Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree
    • Zhang, Y., S. Wang, and Z. Dong, “Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree,” Progress In Electromagnetics Research, Vol. 144, 171-184, 2014.
    • (2014) Progress in Electromagnetics Research , vol.144 , pp. 171-184
    • Zhang, Y.1    Wang, S.2    Dong, Z.3
  • 48
    • 84900480300 scopus 로고    scopus 로고
    • Probabilistic opposition-based particle swarm optimization with velocity clamping
    • Shahzad, F., S. Masood, and N. K. Khan, “Probabilistic opposition-based particle swarm optimization with velocity clamping,” Knowledge and Information Systems, Vol. 39, No. 3, 703-737, Jun. 2014.
    • (2014) Knowledge and Information Systems , vol.39 , Issue.3 , pp. 703-737
    • Shahzad, F.1    Masood, S.2    Khan, N.K.3
  • 49
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm — Explosion, stability, and convergence in a multidimensional complex space
    • Clerc, M. and J. Kennedy, “The particle swarm — Explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, 58-73, Feb. 2002.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 50
    • 85027936669 scopus 로고    scopus 로고
    • Research of biogeography particle swarm optimization for robot path planning
    • Mo, H. W. and L. F. Xu, “Research of biogeography particle swarm optimization for robot path planning,” Neurocomputing, Vol. 148, 91-99, Jan. 2015.
    • (2015) Neurocomputing , vol.148 , pp. 91-99
    • Mo, H.W.1    Xu, L.F.2
  • 51
    • 84907549296 scopus 로고    scopus 로고
    • Biogeography-based optimization for optimal job scheduling in cloud computing
    • Kim, S. S., et al., “Biogeography-based optimization for optimal job scheduling in cloud computing,” Applied Mathematics and Computation, Vol. 247, 266-280, Nov. 2014.
    • (2014) Applied Mathematics and Computation , vol.247 , pp. 266-280
    • Kim, S.S.1
  • 52
    • 84886726325 scopus 로고    scopus 로고
    • A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
    • Kiran, M. S. and M. Gunduz, “A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems,” Applied Soft Computing, Vol. 13, No. 4, 2188-2203, Apr. 2013.
    • (2013) Applied Soft Computing , vol.13 , Issue.4 , pp. 2188-2203
    • Kiran, M.S.1    Gunduz, M.2
  • 53
    • 84901367057 scopus 로고    scopus 로고
    • Cell assignment in hybrid CMOS/nanodevices architecture using a PSO/SA hybrid algorithm
    • Sait, S. M., A. T. Sheikh, and A. H. El-Maleh, “Cell assignment in hybrid CMOS/nanodevices architecture using a PSO/SA hybrid algorithm,” Journal of Applied Research and Technology, Vol. 11, 653-664, Oct. 2013.
    • (2013) Journal of Applied Research and Technology , vol.11 , pp. 653-664
    • Sait, S.M.1    Sheikh, A.T.2    El-Maleh, A.H.3
  • 54
    • 70350022524 scopus 로고    scopus 로고
    • Remote-sensing image classification based on an improved probabilistic neural network
    • Zhang, Y., et al., “Remote-sensing image classification based on an improved probabilistic neural network,” Sensors, Vol. 9, No. 9, 7516-7539, 2009.
    • (2009) Sensors , vol.9 , Issue.9 , pp. 7516-7539
    • Zhang, Y.1
  • 55
    • 84904977190 scopus 로고    scopus 로고
    • Fruit classification using computer vision and feedforward neural-network
    • Zhang, Y., et al., “Fruit classification using computer vision and feedforward neural-network,” Journal of Food Engineering, Vol. 143, No. 0, 167-177, 2014.
    • (2014) Journal of Food Engineering , vol.143 , pp. 167-177
    • Zhang, Y.1
  • 56
    • 84911441675 scopus 로고    scopus 로고
    • Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique
    • Dong, Z., et al., “Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique,” NMR in Biomedicine, Vol. 27, No. 11, 1325-1332, 2014.
    • (2014) NMR in Biomedicine , vol.27 , Issue.11 , pp. 1325-1332
    • Dong, Z.1
  • 57
    • 84901000436 scopus 로고    scopus 로고
    • Diagnosis of the wear of gears in the gearbox using the wavelet packet transform
    • Figlus, T. and M. Stanczyk, “Diagnosis of the wear of gears in the gearbox using the wavelet packet transform,” Metalurgija, Vol. 53, No. 4, 673-676, Oct.-Dec. 2014.
    • (2014) Metalurgija , vol.53 , Issue.4 , pp. 673-676
    • Figlus, T.1    Stanczyk, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.