메뉴 건너뛰기




Volumn 10, Issue 8, 2015, Pages

An automated and intelligent medical decision support system for brain MRI scans classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLINICAL PRACTICE; CONTROLLED STUDY; DECISION SUPPORT SYSTEM; DISCRETE WAVELET TRANSFORM; KERNEL METHOD; MEASUREMENT ACCURACY; NUCLEAR MAGNETIC RESONANCE IMAGING; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; RADIAL BASIS FUNCTION; REGRESSION ANALYSIS; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; WAVELET ANALYSIS; ADULT; AGED; ALGORITHM; BRAIN; DEVICES; EXPERT SYSTEM; FEMALE; HUMAN; INTELLIGENCE; LEAST SQUARE ANALYSIS; MALE; MIDDLE AGED; PATHOLOGY; PROCEDURES; SOFTWARE; VERY ELDERLY;

EID: 84942872731     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0135875     Document Type: Article
Times cited : (38)

References (36)
  • 5
    • 0021271971 scopus 로고
    • Clinical diagnosis of Alzheimer's disease Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
    • 6610841
    • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984; 34 (7) : 939. PMID: 6610841
    • (1984) Neurology , vol.34 , Issue.7 , pp. 939
    • McKhann, G.1    Drachman, D.2    Folstein, M.3    Katzman, R.4    Price, D.5    Stadlan, E.M.6
  • 7
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification by an improved artificial bee colony algorithm
    • Zhang Y, Wu L, Wang S. Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog Electromagn Res. 2011; 116: 65-79.
    • (2011) Prog Electromagn Res , vol.116 , pp. 65-79
    • Zhang, Y.1    Wu, L.2    Wang, S.3
  • 8
    • 84860603285 scopus 로고    scopus 로고
    • Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
    • Mwangi B, Ebmeier KP, Matthews K, Steele JD. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain. 2012; 135 (5) : 1508-21.
    • (2012) Brain , vol.135 , Issue.5 , pp. 1508-1521
    • Mwangi, B.1    Ebmeier, K.P.2    Matthews, K.3    Steele, J.D.4
  • 9
    • 55749098303 scopus 로고    scopus 로고
    • Accuracy of dementia diagnosis -A direct comparison between radiologists and a computerized method
    • Klöppel S, Stonnington CM, Barnes J, Chen F, Chu C, Good CD, et al. Accuracy of dementia diagnosis -A direct comparison between radiologists and a computerized method. Brain. 2008; 131 (11) : 2969-74.
    • (2008) Brain , vol.131 , Issue.11 , pp. 2969-2974
    • Klöppel, S.1    Stonnington, C.M.2    Barnes, J.3    Chen, F.4    Chu, C.5    Good, C.D.6
  • 10
    • 84874932348 scopus 로고    scopus 로고
    • Computer assisted diagnostic system in tumor radiography
    • Faisal A, Parveen S, Badsha S, Sarwar H, Reza AW. Computer assisted diagnostic system in tumor radiography. J Med Syst. 2013; 37 (3) : 1-10.
    • (2013) J Med Syst , vol.37 , Issue.3 , pp. 1-10
    • Faisal, A.1    Parveen, S.2    Badsha, S.3    Sarwar, H.4    Reza, A.W.5
  • 11
    • 33745255698 scopus 로고    scopus 로고
    • Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
    • Chaplot S, Patnaik L, Jagannathan N. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control. 2006; 1 (1) : 86-92.
    • (2006) Biomed Signal Process Control , vol.1 , Issue.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.2    Jagannathan, N.3
  • 12
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid intelligent techniques for MRI brain images classification
    • El-Dahshan E-SA, Hosny T, Salem A-BM. Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process. 2010; 20 (2) : 433-41.
    • (2010) Digit Signal Process , vol.20 , Issue.2 , pp. 433-441
    • El-Dahshan, E.-S.A.1    Hosny, T.2    Salem, A.-B.M.3
  • 13
    • 78651253373 scopus 로고    scopus 로고
    • A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO
    • Zhang Y, Wang S, Wu L. A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Prog Electromagn Res. 2010; 109: 325-43.
    • (2010) Prog Electromagn Res , vol.109 , pp. 325-343
    • Zhang, Y.1    Wang, S.2    Wu, L.3
  • 14
    • 79953706565 scopus 로고    scopus 로고
    • A hybrid method for MRI brain image classification
    • Zhang Y, Dong Z, Wu L, Wang S. A hybrid method for MRI brain image classification. Expert Syst Appl. 2011; 38 (8) : 10049-53.
    • (2011) Expert Syst Appl , vol.38 , Issue.8 , pp. 10049-10053
    • Zhang, Y.1    Dong, Z.2    Wu, L.3    Wang, S.4
  • 15
    • 84866525215 scopus 로고    scopus 로고
    • An MR brain images classifier via principal component analysis and kernel support vector machine
    • Zhang Y, Wu L. An MR brain images classifier via principal component analysis and kernel support vector machine. Prog Electromagn Res. 2012; 130: 369-88.
    • (2012) Prog Electromagn Res , vol.130 , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 16
    • 84873725415 scopus 로고    scopus 로고
    • Brain MR image classification using multiscale geometric analysis of ripplet
    • Das S, Chowdhury M, Kundu MK. Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res. 2013; 137: 1-17.
    • (2013) Prog Electromagn Res , vol.137 , pp. 1-17
    • Das, S.1    Chowdhury, M.2    Kundu, M.K.3
  • 17
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • 15541948
    • Cawley GC, Talbot NL. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw. 2004; 17 (10) : 1467-75. PMID: 15541948
    • (2004) Neural Netw , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.2
  • 18
    • 15344351150 scopus 로고    scopus 로고
    • An improved conjugate gradient scheme to the solution of least squares SVM
    • 15787157
    • Chu W, Ong CJ, Keerthi SS. An improved conjugate gradient scheme to the solution of least squares SVM. IEEE Trans Neural Netw. 2005; 16 (2) : 498-501. PMID: 15787157
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.2 , pp. 498-501
    • Chu, W.1    Ong, C.J.2    Keerthi, S.S.3
  • 19
    • 33847043225 scopus 로고    scopus 로고
    • A Slantlet transform based intelligent system for magnetic resonance brain image classification
    • Maitra M, Chatterjee A. A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomed Signal Process Control. 2006; 1 (4) : 299-306.
    • (2006) Biomed Signal Process Control , vol.1 , Issue.4 , pp. 299-306
    • Maitra, M.1    Chatterjee, A.2
  • 21
    • 79957756950 scopus 로고    scopus 로고
    • Crop Classification by forward neural network with adaptive chaotic particle swarm optimization
    • 22163872
    • Zhang Y, Wu L. Crop Classification by forward neural network with adaptive chaotic particle swarm optimization. Sensors. 2011; 11 (5) : 4721-43. doi: 10.3390/s110504721 PMID: 22163872
    • (2011) Sensors , vol.11 , Issue.5 , pp. 4721-4743
    • Zhang, Y.1    Wu, L.2
  • 22
    • 39549095316 scopus 로고    scopus 로고
    • An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases
    • 18177849
    • Sengur A. An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases. Comput Biol Med. 2008; 38 (3) : 329-38. doi: 10. 1016/j.compbiomed.2007.11.004 PMID: 18177849
    • (2008) Comput Biol Med , vol.38 , Issue.3 , pp. 329-338
    • Sengur, A.1
  • 24
    • 23944482252 scopus 로고    scopus 로고
    • Regression models using pattern search assisted least square support vector machines
    • Patil N, Shelokar P, Jayaraman V, Kulkarni B. Regression models using pattern search assisted least square support vector machines. Chem Eng Res Des. 2005; 83 (8) : 1030-7.
    • (2005) Chem Eng Res Des , vol.83 , Issue.8 , pp. 1030-1037
    • Patil, N.1    Shelokar, P.2    Jayaraman, V.3    Kulkarni, B.4
  • 25
    • 79957798310 scopus 로고    scopus 로고
    • The support vector machine for dielectric target detection through a wall
    • Wang F-F, Zhang Y-R. The support vector machine for dielectric target detection through a wall. Prog Electromagn Res Letters. 2011; 23: 119-28.
    • (2011) Prog Electromagn Res Letters , vol.23 , pp. 119-128
    • Wang, F.-F.1    Zhang, Y.-R.2
  • 27
    • 84872733899 scopus 로고    scopus 로고
    • Object Detection Using Color Entropies and a Fuzzy Classifier
    • Chen G-C, Juang C-F. Object Detection Using Color Entropies and a Fuzzy Classifier. IEEE Comput Intell Mag. 2013; 8 (1) : 33-45.
    • (2013) IEEE Comput Intell Mag , vol.8 , Issue.1 , pp. 33-45
    • Chen, G.-C.1    Juang, C.-F.2
  • 28
    • 84884474932 scopus 로고    scopus 로고
    • Compressive Sensing Based Face Detection without Explicit Image Reconstruction Using Support Vector Machines
    • Springer
    • Magalhães F, Sousa R, Araújo FM, Correia MV. Compressive Sensing Based Face Detection without Explicit Image Reconstruction Using Support Vector Machines. Image Analysis and Recognition: Springer; 2013. p. 758-65.
    • (2013) Image Analysis and Recognition , pp. 758-765
    • Magalhães, F.1    Sousa, R.2    Araújo, F.M.3    Correia, M.V.4
  • 29
    • 84876744855 scopus 로고    scopus 로고
    • Handwritten Character Recognition using Different Kernel based SVM Classifier and MLP Neural Network (A COMPARISON)
    • Kumar P, Sharma N, Rana A. Handwritten Character Recognition using Different Kernel based SVM Classifier and MLP Neural Network (A COMPARISON) . Int J Comput Appl. 2012; 53 (11) : 25-31.
    • (2012) Int J Comput Appl , vol.53 , Issue.11 , pp. 25-31
    • Kumar, P.1    Sharma, N.2    Rana, A.3
  • 30
    • 84858392734 scopus 로고    scopus 로고
    • Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers
    • editors IOP Publishing
    • Matoug S, Abdel-Dayem A, Passi K, Gross W, Alqarni M, editors. Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers. Journal of Physics: Conference Series; 2012: IOP Publishing.
    • (2012) Journal of Physics: Conference Series
    • Matoug, S.1    Abdel-Dayem, A.2    Passi, K.3    Gross, W.4    Alqarni, M.5
  • 31
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999; 9 (3) : 293-300.
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 33
    • 33750704262 scopus 로고    scopus 로고
    • PSO-based hyper-parameters selection for LS-SVM classifiers
    • Springer
    • Guo X, Liang Y, Wu C, Wang C. PSO-based hyper-parameters selection for LS-SVM classifiers. Neural Information Processing: Springer; 2006. p. 1138-47.
    • (2006) Neural Information Processing , pp. 1138-1147
    • Guo, X.1    Liang, Y.2    Wu, C.3    Wang, C.4
  • 35
    • 77950555319 scopus 로고    scopus 로고
    • LSSVM parameters optimizing and non-linear system prediction based on cross validation
    • editors ICNC'09 2009: IEEE
    • Zhang W, Li C, Zhong B, editors. LSSVM parameters optimizing and non-linear system prediction based on cross validation. Fifth International Conference on Natural Computation, 2009 ICNC'09 2009: IEEE.
    • (2009) Fifth International Conference on Natural Computation
    • Zhang, W.1    Li, C.2    Zhong, B.3
  • 36
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K, Keerthi SS, Poo AN. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing. 2003; 51: 41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.