메뉴 건너뛰기




Volumn 92, Issue 9, 2016, Pages 827-837

Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection

Author keywords

kernel support vector machine; Magnetic Resonance Imaging; Principal Component Analysis; stationary wavelet transform; support vector machine

Indexed keywords

BRAIN MAPPING; CLASSIFICATION (OF INFORMATION); DIAGNOSIS; FEATURE EXTRACTION; MAGNETIC RESONANCE IMAGING; NEUROIMAGING; NONINVASIVE MEDICAL PROCEDURES; PRINCIPAL COMPONENT ANALYSIS; VECTORS; WAVELET TRANSFORMS;

EID: 84988719691     PISSN: 00375497     EISSN: 17413133     Source Type: Journal    
DOI: 10.1177/0037549716629227     Document Type: Article
Times cited : (33)

References (65)
  • 1
    • 84919414956 scopus 로고    scopus 로고
    • Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging
    • Yu D, Shui H, Gen L, et al. Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging. IEEJ Trans Electr Electron Eng 2015; 10: 116-117.
    • (2015) IEEJ Trans Electr Electron Eng , vol.10 , pp. 116-117
    • Yu, D.1    Shui, H.2    Gen, L.3
  • 2
    • 84978522827 scopus 로고    scopus 로고
    • Curve-like structure extraction using minimal path propagation with back-tracing
    • Chen Y, Zhang Y, Yang J, et al. Curve-like structure extraction using minimal path propagation with back-tracing. IEEE Trans Image Process 2015; 99: 1-16.
    • (2015) IEEE Trans Image Process , vol.99 , pp. 1-16
    • Chen, Y.1    Zhang, Y.2    Yang, J.3
  • 3
    • 84940735200 scopus 로고    scopus 로고
    • Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach
    • Brahim A, Gorriz JM, Ramirez J, et al., Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach. Appl Soft Comput 2015; 37: 234-244.
    • (2015) Appl Soft Comput , vol.37 , pp. 234-244
    • Brahim, A.1    Gorriz, J.M.2    Ramirez, J.3
  • 4
    • 84911441675 scopus 로고    scopus 로고
    • Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique
    • Dong Z, Zhang Y, Liu F, et al., Improving the spectral resolution and spectral fitting of 1H MRSI data from human calf muscle by the SPREAD technique. NMR Biomed 2014; 27: 1325-1332.
    • (2014) NMR Biomed , vol.27 , pp. 1325-1332
    • Dong, Z.1    Zhang, Y.2    Liu, F.3
  • 5
    • 84941729119 scopus 로고    scopus 로고
    • Improving the safety and quality of raw tuna fillets by X-ray irradiation
    • Mahmoud BSM, Nannapaneni R, Chang S, et al., Improving the safety and quality of raw tuna fillets by X-ray irradiation. Food Control 2016; 60: 569-574.
    • (2016) Food Control , vol.60 , pp. 569-574
    • Mahmoud, B.S.M.1    Nannapaneni, R.2    Chang, S.3
  • 6
    • 84902184683 scopus 로고    scopus 로고
    • Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging
    • Goh S, Dong Z, Zhang Y, et al. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatr 2014; 71: 665-671.
    • (2014) JAMA Psychiatr , vol.71 , pp. 665-671
    • Goh, S.1    Dong, Z.2    Zhang, Y.3
  • 7
    • 84885597453 scopus 로고    scopus 로고
    • An MR brain images classifier system via particle swarm optimization and kernel support vector machine
    • Zhang Y, Wang S, Ji G, et al. An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci World J 2013; 2013: 9.
    • (2013) Sci World J , vol.2013 , pp. 9
    • Zhang, Y.1    Wang, S.2    Ji, G.3
  • 8
    • 84946484457 scopus 로고    scopus 로고
    • Estimating the population local wavelet spectrum with application to non-stationary functional magnetic resonance imaging time series
    • Gott AN, Eckley IA, Aston JAD,. Estimating the population local wavelet spectrum with application to non-stationary functional magnetic resonance imaging time series. Stat Med 2015; 34: 3901-3915.
    • (2015) Stat Med , vol.34 , pp. 3901-3915
    • Gott, A.N.1    Eckley, I.A.2    Aston, J.A.D.3
  • 9
    • 84940020478 scopus 로고    scopus 로고
    • Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging
    • Zhang Y, Dong Z, Phillips P, et al. Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging. Inform Sci 2015; 322: 115-132.
    • (2015) Inform Sci , vol.322 , pp. 115-132
    • Zhang, Y.1    Dong, Z.2    Phillips, P.3
  • 10
    • 84947232958 scopus 로고    scopus 로고
    • Renal blood oxygenation level-dependent magnetic resonance imaging a sensitive and objective analysis
    • Thacker JM, Li LP, Li W, et al. Renal blood oxygenation level-dependent magnetic resonance imaging a sensitive and objective analysis. Investig Radiol 2015; 50: 821-827.
    • (2015) Investig Radiol , vol.50 , pp. 821-827
    • Thacker, J.M.1    Li, L.P.2    Li, W.3
  • 11
    • 84947939480 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine
    • Zhang Y-D, Chen S, Wang S-H, et al. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int J Imag Syst Technol 2015; 25: 317-327.
    • (2015) Int J Imag Syst Technol , vol.25 , pp. 317-327
    • Zhang, Y.-D.1    Chen, S.2    Wang, S.-H.3
  • 12
    • 33745255698 scopus 로고    scopus 로고
    • Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
    • Chaplot S, Patnaik LM, Jagannathan NR., Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 2006; 1: 86-92.
    • (2006) Biomed Signal Process Control , vol.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.M.2    Jagannathan, N.R.3
  • 13
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid intelligent techniques for MRI brain images classification
    • El-Dahshan ESA, Hosny T, Salem ABM., Hybrid intelligent techniques for MRI brain images classification. Digital Signal Process 2010; 20: 433-441.
    • (2010) Digital Signal Process , vol.20 , pp. 433-441
    • El-Dahshan, E.S.A.1    Hosny, T.2    Salem, A.B.M.3
  • 14
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification by an improved artificial bee colony algorithm
    • Wu L, Wang S., Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Progr Electromagn Res 2011; 116: 65-79.
    • (2011) Progr Electromagn Res , vol.116 , pp. 65-79
    • Wu, L.1    Wang, S.2
  • 15
    • 79953706565 scopus 로고    scopus 로고
    • A hybrid method for MRI brain image classification
    • Dong Z, Wu L, Wang S, et al. A hybrid method for MRI brain image classification. Expert Syst Appl 2011; 38: 10049-10053.
    • (2011) Expert Syst Appl , vol.38 , pp. 10049-10053
    • Dong, Z.1    Wu, L.2    Wang, S.3
  • 16
    • 79960338927 scopus 로고    scopus 로고
    • Brain tissue classification of MR images using fast Fourier transform based expectation-maximization Gaussian mixture model
    • (eds.). Berlin, Germany: Springer
    • Ramasamy R, Anandhakumar P,. Brain tissue classification of MR images using fast Fourier transform based expectation-maximization Gaussian mixture model. In: Wyld Michal Wozniak, Chaki Nabendu, Meghanathan Natarajan, Nagamalai Dhinaharan, (eds.) Advances in computing and information technology. Berlin, Germany: Springer, 2011, pp. 387-398.
    • (2011) Advances in Computing and Information Technology , pp. 387-398
    • Ramasamy, R.1    Anandhakumar, P.2    Wyld, M.W.3    Chaki, N.4    Meghanathan, N.5    Nagamalai, D.6
  • 17
    • 84866525215 scopus 로고    scopus 로고
    • An MR brain images classifier via principal component analysis and kernel support vector machine
    • Zhang Y, Wu L., An MR brain images classifier via principal component analysis and kernel support vector machine. Progr Electromagn Res 2012; 130: 369-388.
    • (2012) Progr Electromagn Res , vol.130 , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 18
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha M, Paul Joseph K, Mathew AT., Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit Lett 2013; 34: 2151-2156.
    • (2013) Pattern Recognit Lett , vol.34 , pp. 2151-2156
    • Saritha, M.1    Paul Joseph, K.2    Mathew, A.T.3
  • 19
    • 84929627799 scopus 로고    scopus 로고
    • Effect of spider-web-plot in MR brain image classification
    • Zhang Y, Dong Z, Ji G, et al., Effect of spider-web-plot in MR brain image classification. Pattern Recognit Lett 2015; 62: 14-16.
    • (2015) Pattern Recognit Lett , vol.62 , pp. 14-16
    • Zhang, Y.1    Dong, Z.2    Ji, G.3
  • 20
    • 84873725415 scopus 로고    scopus 로고
    • Brain MR image classification using multiscale geometric analysis of ripplet
    • Das S, Chowdhury M, Kundu MK., Brain MR image classification using multiscale geometric analysis of ripplet. Progr Electromagn Res Pier 2013; 137: 1-17.
    • (2013) Progr Electromagn Res Pier , vol.137 , pp. 1-17
    • Das, S.1    Chowdhury, M.2    Kundu, M.K.3
  • 21
    • 84892614873 scopus 로고    scopus 로고
    • Classification of Alzheimer Disease based on structural magnetic resonance imaging by kernel support vector machine decision tree
    • Wang S, Dong Z, Ji G, et al. Classification of Alzheimer Disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Progr Electromagn Res 2014; 144: 171-184.
    • (2014) Progr Electromagn Res , vol.144 , pp. 171-184
    • Wang, S.1    Dong, Z.2    Ji, G.3
  • 22
    • 84944456448 scopus 로고    scopus 로고
    • Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier
    • (eds). Granada, Spain: Springer International Publishing
    • Zhou X, Wang S, Xu W, et al. Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. In: Ortuño F, Rojas I, (eds) Bioinformatics and biomedical engineering. Granada, Spain: Springer International Publishing, 2015, pp. 201-209.
    • (2015) Bioinformatics and Biomedical Engineering , pp. 201-209
    • Zhou, X.1    Wang, S.2    Xu, W.3    Ortuño, F.4    Rojas, I.5
  • 23
    • 84930332968 scopus 로고    scopus 로고
    • Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)
    • Zhang Y, Dong Z, Wang S, et al. Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 2015; 17: 1795-1813.
    • (2015) Entropy , vol.17 , pp. 1795-1813
    • Zhang, Y.1    Dong, Z.2    Wang, S.3
  • 24
    • 84920501690 scopus 로고    scopus 로고
    • Combining tissue segmentation and neural network for brain tumor detection
    • Damodharan S, Raghavan D., Combining tissue segmentation and neural network for brain tumor detection. Int Arab J Inform Technol 2015; 12: 42-52.
    • (2015) Int Arab J Inform Technol , vol.12 , pp. 42-52
    • Damodharan, S.1    Raghavan, D.2
  • 25
    • 84928688048 scopus 로고    scopus 로고
    • Automated classification of brain images using wavelet-energy and biogeography-based optimization
    • Published ahead of print 1 May 2015. DOI: 10.1007/s11042-015-2649-7
    • Yang G, Zhang Y, Yang J, et al. Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed Tool Appl. Published ahead of print 1 May 2015. DOI: 10.1007/s11042-015-2649-7.
    • Multimed Tool Appl
    • Yang, G.1    Zhang, Y.2    Yang, J.3
  • 26
    • 84923171982 scopus 로고    scopus 로고
    • A simple and intelligent approach for brain MRI classification
    • Nazir M, Wahid F, Khan SA., A simple and intelligent approach for brain MRI classification. J Intell Fuzzy Syst 2015; 28: 1127-1135.
    • (2015) J Intell Fuzzy Syst , vol.28 , pp. 1127-1135
    • Nazir, M.1    Wahid, F.2    Khan, S.A.3
  • 27
    • 84930681763 scopus 로고    scopus 로고
    • Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
    • Zhang Y, Dong Z, Phillips P, et al. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 2015; 66: 1-15.
    • (2015) Front Comput Neurosci , vol.66 , pp. 1-15
    • Zhang, Y.1    Dong, Z.2    Phillips, P.3
  • 28
    • 84929610466 scopus 로고    scopus 로고
    • Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection
    • Wang S, Zhang Y, Dong Z, et al. Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imag Syst Technol 2015; 25: 153-164.
    • (2015) Int J Imag Syst Technol , vol.25 , pp. 153-164
    • Wang, S.1    Zhang, Y.2    Dong, Z.3
  • 29
    • 84894083764 scopus 로고    scopus 로고
    • Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma
    • LaViolette PS, Daun MK, Paulson ES, et al. Effect of contrast leakage on the detection of abnormal brain tumor vasculature in high-grade glioma. J Neuro Oncol 2014; 116: 543-549.
    • (2014) J Neuro Oncol , vol.116 , pp. 543-549
    • LaViolette, P.S.1    Daun, M.K.2    Paulson, E.S.3
  • 30
    • 84931263154 scopus 로고    scopus 로고
    • Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC
    • Zhang Y, Wang S, Phillips P, et al. Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed Signal Process Control 2015; 21: 58-73.
    • (2015) Biomed Signal Process Control , vol.21 , pp. 58-73
    • Zhang, Y.1    Wang, S.2    Phillips, P.3
  • 31
    • 84946205662 scopus 로고    scopus 로고
    • Genes and brain malformations associated with abnormal neuron positioning
    • Moffat JJ, Ka MH, Jung EM, et al. Genes and brain malformations associated with abnormal neuron positioning. Mol Brain 2015; 8: 12.
    • (2015) Mol Brain , vol.8 , pp. 12
    • Moffat, J.J.1    Ka, M.H.2    Jung, E.M.3
  • 32
    • 84937437761 scopus 로고    scopus 로고
    • Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
    • Zhang Y, Wang S, Dong Z, et al. Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Progr Electromagn Res 2015; 152: 41-58.
    • (2015) Progr Electromagn Res , vol.152 , pp. 41-58
    • Zhang, Y.1    Wang, S.2    Dong, Z.3
  • 33
    • 85000692374 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine
    • Dong Z, Liu A, Wang S, et al. Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imag Health Inform 2015; 5: 1-9.
    • (2015) J Med Imag Health Inform , vol.5 , pp. 1-9
    • Dong, Z.1    Liu, A.2    Wang, S.3
  • 34
    • 84929379453 scopus 로고    scopus 로고
    • Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns
    • Farzan A, Mashohor S, Ramli AR, et al. Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav Brain Res 2015; 290: 124-130.
    • (2015) Behav Brain Res , vol.290 , pp. 124-130
    • Farzan, A.1    Mashohor, S.2    Ramli, A.R.3
  • 35
    • 84977465820 scopus 로고    scopus 로고
    • Pathological brain detection based on wavelet entropy and Hu moment invariants
    • Zhang Y, Wang S, Sun P, et al. Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio Med Mater Eng 2015; 26: 1283-1290.
    • (2015) Bio Med Mater Eng , vol.26 , pp. 1283-1290
    • Zhang, Y.1    Wang, S.2    Sun, P.3
  • 36
    • 84941420890 scopus 로고    scopus 로고
    • Haralick texture analysis of prostate MRI: Utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores
    • Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 2015; 25: 2840-2850.
    • (2015) Eur Radiol , vol.25 , pp. 2840-2850
    • Wibmer, A.1    Hricak, H.2    Gondo, T.3
  • 37
    • 84944903522 scopus 로고    scopus 로고
    • Detection of Alzheimer's disease by displacement field and machine learning
    • 2015; 3: e1251. DOI: 10.7717/peerj
    • Zhang Y, Wang S., Detection of Alzheimer's disease by displacement field and machine learning. PeerJ 2015; 3: e1251. DOI: 10.7717/peerj.
    • PeerJ
    • Zhang, Y.1    Wang, S.2
  • 38
    • 84928768690 scopus 로고    scopus 로고
    • Connectivity and functional profiling of abnormal brain structures in pedophilia
    • Poeppl TB, Eickhoff SB, Fox PT, et al. Connectivity and functional profiling of abnormal brain structures in pedophilia. Hum Brain Mapp 2015; 36: 2374-2386.
    • (2015) Hum Brain Mapp , vol.36 , pp. 2374-2386
    • Poeppl, T.B.1    Eickhoff, S.B.2    Fox, P.T.3
  • 39
    • 84891295297 scopus 로고    scopus 로고
    • RGB-D image-based detection of stairs, pedestrian crosswalks and traffic signs
    • Wang S, Pan H, Zhang C, et al. RGB-D image-based detection of stairs, pedestrian crosswalks and traffic signs. J Vis Comm Image Represent 2014; 25: 263-272.
    • (2014) J Vis Comm Image Represent , vol.25 , pp. 263-272
    • Wang, S.1    Pan, H.2    Zhang, C.3
  • 40
    • 84901238143 scopus 로고    scopus 로고
    • Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
    • Zhang Y, Wang S, Phillips P, et al. Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowl Base Syst 2014; 64: 22-31.
    • (2014) Knowl Base Syst , vol.64 , pp. 22-31
    • Zhang, Y.1    Wang, S.2    Phillips, P.3
  • 41
    • 59849096266 scopus 로고    scopus 로고
    • Shift-invariance of short-time Fourier transform in fractional Fourier domains
    • Durak L., Shift-invariance of short-time Fourier transform in fractional Fourier domains. J Franklin Inst 2009; 346: 136-146.
    • (2009) J Franklin Inst , vol.346 , pp. 136-146
    • Durak, L.1
  • 42
    • 84964252247 scopus 로고    scopus 로고
    • Stationary wavelet transform for under-sampled MRI reconstruction
    • Kayvanrad MH, McLeod AJ, Baxter JSH, et al. Stationary wavelet transform for under-sampled MRI reconstruction. Magn Reson Imag 2014; 32: 1353-1364.
    • (2014) Magn Reson Imag , vol.32 , pp. 1353-1364
    • Kayvanrad, M.H.1    McLeod, A.J.2    Baxter, J.S.H.3
  • 43
    • 84925676853 scopus 로고    scopus 로고
    • Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
    • Asgari S, Mehrnia A, Moussavi M., Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput Biol Med 2015; 60: 132-142.
    • (2015) Comput Biol Med , vol.60 , pp. 132-142
    • Asgari, S.1    Mehrnia, A.2    Moussavi, M.3
  • 44
    • 84948461606 scopus 로고    scopus 로고
    • Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine
    • Zhang Y-D, Wang S-H, Yang X-J, et al. Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus 2015; 4: 716.
    • (2015) SpringerPlus , vol.4 , pp. 716
    • Zhang, Y.-D.1    Wang, S.-H.2    Yang, X.-J.3
  • 45
    • 84946056461 scopus 로고    scopus 로고
    • Identification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine
    • Wang S, Yang X, Zhang Y, et al. Identification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine. Entropy 2015; 17: 6663-6682.
    • (2015) Entropy , vol.17 , pp. 6663-6682
    • Wang, S.1    Yang, X.2    Zhang, Y.3
  • 47
    • 69849100832 scopus 로고    scopus 로고
    • A new classifier for polarimetric SAR images
    • Wu L, Wei G., A new classifier for polarimetric SAR images. Progr Electromagn Res 2009; 94: 83-104.
    • (2009) Progr Electromagn Res , vol.94 , pp. 83-104
    • Wu, L.1    Wei, G.2
  • 48
    • 67349250906 scopus 로고    scopus 로고
    • Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines
    • Martiskainen P, Järvinen M, Skön J-P, et al. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl Anim Behav Sci 2009; 119: 32-38.
    • (2009) Appl Anim Behav Sci , vol.119 , pp. 32-38
    • Martiskainen, P.1    Järvinen, M.2    Skön, J.-P.3
  • 49
    • 84860747788 scopus 로고    scopus 로고
    • Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty
    • Jeyakumar V, Wang JH, Li G., Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty. J Math Anal Appl 2012; 393: 285-297.
    • (2012) J Math Anal Appl , vol.393 , pp. 285-297
    • Jeyakumar, V.1    Wang, J.H.2    Li, G.3
  • 50
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker F, Smale S., On the mathematical foundations of learning. Bull Am Math Soc 2002; 39: 1-49.
    • (2002) Bull Am Math Soc , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 51
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • Poggio T, Smale S., The mathematics of learning: dealing with data. Not Am Math Soc 2003; 50: 537-544.
    • (2003) Not Am Math Soc , vol.50 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 52
    • 84940487338 scopus 로고    scopus 로고
    • Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization
    • Wang S, Zhang Y, Ji G, et al. Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization. Entropy 2015; 17: 5711-5728.
    • (2015) Entropy , vol.17 , pp. 5711-5728
    • Wang, S.1    Zhang, Y.2    Ji, G.3
  • 53
    • 84941058498 scopus 로고    scopus 로고
    • Biogeography-based optimization of a variable camshaft timing system
    • Thomas G, Simon D, Michelini J., Biogeography-based optimization of a variable camshaft timing system. Eng Appl Artif Intell 2015; 45: 376-387.
    • (2015) Eng Appl Artif Intell , vol.45 , pp. 376-387
    • Thomas, G.1    Simon, D.2    Michelini, J.3
  • 54
    • 84860184113 scopus 로고    scopus 로고
    • UCAV path planning based on FSCABC
    • Zhang Y, Wu L, Wang S., UCAV path planning based on FSCABC. Information 2011; 14: 687-692.
    • (2011) Information , vol.14 , pp. 687-692
    • Zhang, Y.1    Wu, L.2    Wang, S.3
  • 55
    • 84946594080 scopus 로고    scopus 로고
    • Fast artificial bee colony and its application to stereo correspondence
    • Hong PN, Ahn CW., Fast artificial bee colony and its application to stereo correspondence. Expert Syst Appl 2016; 45: 460-470.
    • (2016) Expert Syst Appl , vol.45 , pp. 460-470
    • Hong, P.N.1    Ahn, C.W.2
  • 56
    • 84875530447 scopus 로고    scopus 로고
    • Solving Two-dimensional HP model by firefly algorithm and simplified energy function
    • Zhang Y, Wu L, Wang S., Solving Two-dimensional HP model by firefly algorithm and simplified energy function. Math Prob Eng 2013; 13: 1-9.
    • (2013) Math Prob Eng , vol.13 , pp. 1-9
    • Zhang, Y.1    Wu, L.2    Wang, S.3
  • 57
    • 84938398508 scopus 로고    scopus 로고
    • Bouc-Wen hysteresis model identification using Modified Firefly Algorithm
    • Zaman MA, Sikder U., Bouc-Wen hysteresis model identification using Modified Firefly Algorithm. J Magn Magn Mater 2015; 395: 229-233.
    • (2015) J Magn Magn Mater , vol.395 , pp. 229-233
    • Zaman, M.A.1    Sikder, U.2
  • 58
    • 84945291666 scopus 로고    scopus 로고
    • A comprehensive survey on particle swarm optimization algorithm and its applications
    • Zhang Y, Wang S, Ji G., A comprehensive survey on particle swarm optimization algorithm and its applications. Math Prob Eng 2015; 2015: 38.
    • (2015) Math Prob Eng , vol.2015 , pp. 38
    • Zhang, Y.1    Wang, S.2    Ji, G.3
  • 59
    • 84988705124 scopus 로고    scopus 로고
    • Fitness-scaling adaptive genetic algorithm with local search for solving the Multiple Depot Vehicle Routing Problem
    • Wang S, Lu Z, Wei L, et al. Fitness-scaling adaptive genetic algorithm with local search for solving the Multiple Depot Vehicle Routing Problem. Simulation 2015; 91: 1-16.
    • (2015) Simulation , vol.91 , pp. 1-16
    • Wang, S.1    Lu, Z.2    Wei, L.3
  • 60
    • 84947787492 scopus 로고    scopus 로고
    • Design and optimization of a compressed air energy storage (CAES) power plant by implementing genetic algorithm
    • Shamshirgaran SR, Ameri M, Khalaji M, et al. Design and optimization of a compressed air energy storage (CAES) power plant by implementing genetic algorithm. Mech Ind 2016; 17: 8.
    • (2016) Mech Ind , vol.17 , pp. 8
    • Shamshirgaran, S.R.1    Ameri, M.2    Khalaji, M.3
  • 61
    • 84949292725 scopus 로고    scopus 로고
    • Detection of dendritic spines using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks
    • Wang S, Chen M, Li Y, et al. Detection of dendritic spines using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks. Comput Math Methods Med 2015; 2015: 12.
    • (2015) Comput Math Methods Med , vol.2015 , pp. 12
    • Wang, S.1    Chen, M.2    Li, Y.3
  • 62
    • 84940704029 scopus 로고    scopus 로고
    • Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings
    • Azami H, Escudero J., Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings. Biomed Signal Process Control 2016; 23: 28-41.
    • (2016) Biomed Signal Process Control , vol.23 , pp. 28-41
    • Azami, H.1    Escudero, J.2
  • 63
    • 84952683289 scopus 로고    scopus 로고
    • Pathological brain detection by a novel image feature - Fractional fourier entropy
    • Wang S, Zhang Y, Yang X, et al. Pathological brain detection by a novel image feature-fractional fourier entropy. Entropy 2015; 17: 7877.
    • (2015) Entropy , vol.17 , pp. 7877
    • Wang, S.1    Zhang, Y.2    Yang, X.3
  • 64
    • 84949920975 scopus 로고    scopus 로고
    • Association of restless legs syndrome, pain, and mood disorders in Parkinson's disease
    • Rana AQ, Qureshi ARM, Rahman L, et al. Association of restless legs syndrome, pain, and mood disorders in parkinson's disease. Int J Neurosci 2016; 126: 116-120.
    • (2016) Int J Neurosci , vol.126 , pp. 116-120
    • Rana, A.Q.1    Qureshi, A.R.M.2    Rahman, L.3
  • 65
    • 84954184199 scopus 로고    scopus 로고
    • Detection of Alzheimer's Disease by three-dimensional displacement field estimation in structural magnetic resonance imaging
    • Wang S, Zhang Y, Liu G, et al. Detection of Alzheimer's Disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. J Alzheimer's Dis 2016; 50: 1-16.
    • (2016) J Alzheimer's Dis , vol.50 , pp. 1-16
    • Wang, S.1    Zhang, Y.2    Liu, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.