-
1
-
-
0032962382
-
Quantitative follow-up of patients with multiple sclerosis using MRI: Reproducibility
-
Guttmann CR, Kikinis R, Anderson MC, Jakab M, Warfield SK, Killiany RJ, et al. Quantitative follow-up of patients with multiple sclerosis using MRI: Reproducibility. J Magn Reson Imaging 1999;9:509-18.
-
(1999)
J Magn Reson Imaging
, vol.9
, pp. 509-518
-
-
Guttmann, C.R.1
Kikinis, R.2
Anderson, M.C.3
Jakab, M.4
Warfield, S.K.5
Killiany, R.J.6
-
2
-
-
37549014476
-
A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images
-
Khayati R, Vafadust M, Towhidkhah F, Nabavi SM. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Comput Med Imaging Graph 2008;32:124-33.
-
(2008)
Comput Med Imaging Graph
, vol.32
, pp. 124-133
-
-
Khayati, R.1
Vafadust, M.2
Towhidkhah, F.3
Nabavi, S.M.4
-
3
-
-
1542346211
-
Probabilistic segmentation of white matter lesions in MR imaging
-
Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J. Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage 2004;21:1037-44.
-
(2004)
Neuroimage
, vol.21
, pp. 1037-1044
-
-
Anbeek, P.1
Vincken, K.L.2
Van Osch, M.J.3
Bisschops, R.H.4
Van Der Grond, J.5
-
6
-
-
0036447876
-
Two channels fuzzy c-means detection of multiple sclerosis lesions in multispectral MR images
-
Ardizzone E, Pirrone R, Gambino O, Peri D. Two channels fuzzy c-means detection of multiple sclerosis lesions in multispectral MR images. In: IEEE Proceeding of ICIP2002; 2002. p. 345-8.
-
(2002)
IEEE Proceeding of ICIP2002
, pp. 345-348
-
-
Ardizzone, E.1
Pirrone, R.2
Gambino, O.3
Peri, D.4
-
7
-
-
0345134269
-
Segmentation of multiple sclerosis lesions from MR brain images using the principles of fuzzy-connectedness and artificial neuron networks
-
Admasu F, Al-Zubi S, Toennies K, Bodammer N, Hinrichs H. Segmentation of multiple sclerosis lesions from MR brain images using the principles of fuzzy-connectedness and artificial neuron networks. In: IEEE Proceedings of ICIP2003; 2003. p. 1081-4.
-
(2003)
IEEE Proceedings of ICIP 2003
, pp. 1081-1084
-
-
Admasu, F.1
Al-Zubi, S.2
Toennies, K.3
Bodammer, N.4
Hinrichs, H.5
-
8
-
-
27544513951
-
Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
-
Admiraal-Behloul F, van den Heuvel DM, Olofsen H, van Osch MJ, van der Grond J, van Buchem MA, et al. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 2005;28:607-17.
-
(2005)
Neuroimage
, vol.28
, pp. 607-617
-
-
Admiraal-Behloul, F.1
Van Den Heuvel, D.M.2
Olofsen, H.3
Van Osch, M.J.4
Van Der Grond, J.5
Van Buchem, M.A.6
-
9
-
-
84880421452
-
Segmentation of multiple sclerosis lesions in brain MR images using spatially constrained possibilistic fuzzy C-means classification
-
Khotanlou H, Afrasiabi M. Segmentation of multiple sclerosis lesions in brain MR images using spatially constrained possibilistic fuzzy C-means classification. J Med Sign Sens 2011;1:149-55.
-
(2011)
J Med Sign Sens
, vol.1
, pp. 149-155
-
-
Khotanlou, H.1
Afrasiabi, M.2
-
12
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges CJ. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998;2:121-67.
-
(1998)
Data Min Knowl Discov
, vol.2
, pp. 121-167
-
-
Burges, C.J.1
-
13
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Van Gestel T, Suykens JA, Baesens B, Viaene S, Vanthienen J, Dedene G, et al. Benchmarking least squares support vector machine classifiers. Mach Learn 2004;54:5-32.
-
(2004)
Mach Learn
, vol.54
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
-
14
-
-
26044433213
-
Predictions in marketing using the support vector machine
-
Cui D, Curry D. Predictions in marketing using the support vector machine. Mark Sci 2005;24:595-615.
-
(2005)
Mark Sci
, vol.24
, pp. 595-615
-
-
Cui, D.1
Curry, D.2
-
15
-
-
0032638628
-
Least square support vector machine classifiers
-
Suykens JA, Vandewalle J. Least square support vector machine classifiers. Neural Process Lett 1999;9:293-300.
-
(1999)
Neural Process Lett
, vol.9
, pp. 293-300
-
-
Suykens, J.A.1
Vandewalle, J.2
-
17
-
-
7044260964
-
Advances in functional and structural MR image analysis and implementation as FSL
-
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23:S208-19.
-
(2004)
Neuroimage
, vol.23
, pp. S208-S219
-
-
Smith, S.M.1
Jenkinson, M.2
Woolrich, M.W.3
Beckmann, C.F.4
Behrens, T.E.5
Johansen-Berg, H.6
-
18
-
-
28544436950
-
Diagnostic criteria for MS 2005 revisions to the MC Donald criteria
-
Polman CH, Reingold SC, Edan G, Fillippi M, Hartung HP, Kappos L. Diagnostic criteria for MS 2005 revisions to the MC Donald criteria. Ann Neurol 2005;58:840-6.
-
(2005)
Ann Neurol
, vol.58
, pp. 840-846
-
-
Polman, C.H.1
Reingold, S.C.2
Edan, G.3
Fillippi, M.4
Hartung, H.P.5
Kappos, L.6
-
19
-
-
33745149669
-
3D brain tumor segmentation using fuzzy classification and deformable models
-
Khotanlou H, Atif J, Colliot O, Bloch I. 3D brain tumor segmentation using fuzzy classification and deformable models. Lect Notes Artif Intell 2005;3849:3128.
-
(2005)
Lect Notes Artif Intell
, vol.3849
, pp. 3128
-
-
Khotanlou, H.1
Atif, J.2
Colliot, O.3
Bloch, I.4
|