메뉴 건너뛰기




Volumn 78, Issue , 2016, Pages 15-23

Noise-enhanced convolutional neural networks

Author keywords

Backpropagation; Convolutional neural network; Expectation maximization algorithm; Noise injection; Sampling from big data sets; Stochastic resonance

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; BIG DATA; CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; CONVOLUTION; GEOMETRY; IMAGE SEGMENTATION; ITERATIVE METHODS; MAGNETIC RESONANCE; MAXIMUM PRINCIPLE; NEURAL NETWORKS; STOCHASTIC SYSTEMS;

EID: 84949871128     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.09.014     Document Type: Article
Times cited : (101)

References (42)
  • 2
    • 84893549944 scopus 로고    scopus 로고
    • Noisy hidden Markov models for speech recognition
    • Audhkhasi, K., Osoba, O., & Kosko, B. (2013b). Noisy hidden Markov models for speech recognition. In Proc. IJCNN (pp. 1-8).
    • (2013) In Proc. IJCNN , pp. 1-8
    • Audhkhasi, K.1    Osoba, O.2    Kosko, B.3
  • 9
    • 80054851884 scopus 로고    scopus 로고
    • Noise can speed convergence in Markov chains
    • Franzke B., Kosko B. Noise can speed convergence in Markov chains. Physical Review E 2011, 84(4).
    • (2011) Physical Review E , vol.84 , Issue.4
    • Franzke, B.1    Kosko, B.2
  • 10
    • 84939176662 scopus 로고    scopus 로고
    • Using noise to speed up Markov chain Monte Carlo estimation
    • Franzke Brandon, Kosko Bart Using noise to speed up Markov chain Monte Carlo estimation. Procedia Computer Science 2015, 53:113-120.
    • (2015) Procedia Computer Science , vol.53 , pp. 113-120
    • Franzke, B.1    Kosko, B.2
  • 11
    • 0023846591 scopus 로고
    • Neocognitron: A hierarchical neural network capable of visual pattern recognition
    • Fukushima K. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks 1988, 1(2):119-130.
    • (1988) Neural Networks , vol.1 , Issue.2 , pp. 119-130
    • Fukushima, K.1
  • 12
    • 6644227318 scopus 로고
    • Stochastic resonance in multi-threshold systems
    • Gammaitoni L. Stochastic resonance in multi-threshold systems. Physics Letters A 1995, 208:315-322.
    • (1995) Physics Letters A , vol.208 , pp. 315-322
    • Gammaitoni, L.1
  • 13
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • Hubel D.H., Wiesel T.N. Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology 1959, 148(3):574-591.
    • (1959) The Journal of Physiology , vol.148 , Issue.3 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 14
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • Jain A.K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters 2010, 31(8):651-666.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 16
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS, Vol. 1 (p. 4).
    • (2012) In NIPS , vol.1 , pp. 4
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 84897549944 scopus 로고    scopus 로고
    • Fastfood-approximating kernel expansions in loglinear time
    • Le, Q., Sarlós, T., & Smola, A. (2013). Fastfood-approximating kernel expansions in loglinear time. In Proc. ICML.
    • (2013) In Proc. ICML.
    • Le, Q.1    Sarlós, T.2    Smola, A.3
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998, 86(11):2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 24
    • 0037707305 scopus 로고    scopus 로고
    • Subject independent facial expression recognition with robust face detection using a convolutional neural network
    • Matsugu M., Mori K., Mitari Y., Kaneda Y. Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks 2003, 16(5):555-559.
    • (2003) Neural Networks , vol.16 , Issue.5 , pp. 555-559
    • Matsugu, M.1    Mori, K.2    Mitari, Y.3    Kaneda, Y.4
  • 25
    • 84912544218 scopus 로고    scopus 로고
    • Noise-benefit forbidden-interval theorems for threshold signal detectors based on cross correlations
    • Mitaim Sanya, Kosko Bart Noise-benefit forbidden-interval theorems for threshold signal detectors based on cross correlations. Physical Review E 2014, 90(5).
    • (2014) Physical Review E , vol.90 , Issue.5
    • Mitaim, S.1    Kosko, B.2
  • 27
    • 84870469359 scopus 로고    scopus 로고
    • Noise-enhanced clustering and competitive learning algorithms
    • Osoba O., Kosko B. Noise-enhanced clustering and competitive learning algorithms. Neural Networks 2013.
    • (2013) Neural Networks
    • Osoba, O.1    Kosko, B.2
  • 28
    • 84961390107 scopus 로고    scopus 로고
    • The noisy expectation-maximization algorithm for multiplicative noise injection
    • Osoba O., Kosko B. The noisy expectation-maximization algorithm for multiplicative noise injection. Fluctuation and Noise Letters 2016.
    • (2016) Fluctuation and Noise Letters
    • Osoba, O.1    Kosko, B.2
  • 31
    • 84966480634 scopus 로고    scopus 로고
    • DeepLearn Toolbox.
    • Palm, Rasmus Berg (2014). DeepLearn Toolbox. https://github.com/rasmusbergpalm/DeepLearnToolbox.
    • (2014)
    • Palm, R.B.1
  • 33
    • 57749092657 scopus 로고    scopus 로고
    • Stochastic resonance in continuous and spiking neurons with Levy noise
    • Patel A., Kosko B. Stochastic resonance in continuous and spiking neurons with Levy noise. IEEE Transactions on Neural Networks 2008, 19(12):1993-2008.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.12 , pp. 1993-2008
    • Patel, A.1    Kosko, B.2
  • 34
    • 68149181688 scopus 로고    scopus 로고
    • Error-probability noise benefits in threshold neural signal detection
    • Patel A., Kosko B. Error-probability noise benefits in threshold neural signal detection. Neural Networks 2009, 22(5):697-706.
    • (2009) Neural Networks , vol.22 , Issue.5 , pp. 697-706
    • Patel, A.1    Kosko, B.2
  • 35
    • 78149439930 scopus 로고    scopus 로고
    • Optimal mean-square noise benefits in quantizer-array linear estimation
    • Patel A., Kosko B. Optimal mean-square noise benefits in quantizer-array linear estimation. IEEE Signal Processing Letters 2010, 17(12):1005-1009.
    • (2010) IEEE Signal Processing Letters , vol.17 , Issue.12 , pp. 1005-1009
    • Patel, A.1    Kosko, B.2
  • 36
    • 78651369533 scopus 로고    scopus 로고
    • Noise benefits in quantizer-array correlation detection and watermark decoding
    • Patel A., Kosko B. Noise benefits in quantizer-array correlation detection and watermark decoding. IEEE Transactions on Signal Processing 2011, 59(2):488-505.
    • (2011) IEEE Transactions on Signal Processing , vol.59 , Issue.2 , pp. 488-505
    • Patel, A.1    Kosko, B.2
  • 37
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323(6088):533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 38
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • Simard, P., Steinkraus, D., & Platt, J.C. (2003). Best practices for convolutional neural networks applied to visual document analysis. In ICDAR, Vol. 3 (pp. 958-962).
    • (2003) In ICDAR , vol.3 , pp. 958-962
    • Simard, P.1    Steinkraus, D.2    Platt, J.C.3
  • 40
    • 85032752433 scopus 로고    scopus 로고
    • Modeling and optimization for big data analytics: (statistical) learning tools for our era of data deluge
    • Slavakis K., Giannakis G., Mateos G. Modeling and optimization for big data analytics: (statistical) learning tools for our era of data deluge. IEEE Signal Processing Magazine 2014, 31(5):18-31.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.5 , pp. 18-31
    • Slavakis, K.1    Giannakis, G.2    Mateos, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.