메뉴 건너뛰기




Volumn 177, Issue , 2016, Pages 188-197

Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests

Author keywords

AdaBoost with random forests (ADBRF); Computer aided diagnosis (CAD); Discrete wavelet transform (DWT); Magnetic resonance imaging (MRI); Probabilistic principal component analysis (PPCA)

Indexed keywords

ADAPTIVE BOOSTING; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED ANALYSIS; COMPUTER AIDED DIAGNOSIS; DECISION TREES; DISCRETE WAVELET TRANSFORMS; FACE RECOGNITION; MAGNETIC RESONANCE IMAGING; PRINCIPAL COMPONENT ANALYSIS; WAVELET TRANSFORMS;

EID: 84959508179     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.11.034     Document Type: Article
Times cited : (239)

References (28)
  • 2
    • 79953706565 scopus 로고    scopus 로고
    • A hybrid method for MRI brain image classification
    • Zhang Y., Dong Z., Wu L., Wang S. A hybrid method for MRI brain image classification. Expert Syst. Appl. 2011, 38(8):10049-10053.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10049-10053
    • Zhang, Y.1    Dong, Z.2    Wu, L.3    Wang, S.4
  • 3
    • 33745255698 scopus 로고    scopus 로고
    • Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
    • Chaplot S., Patnaik L.M., Jagannathan N.R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control 2006, 1(1):86-92.
    • (2006) Biomed. Signal Process. Control , vol.1 , Issue.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.M.2    Jagannathan, N.R.3
  • 4
    • 33847043225 scopus 로고    scopus 로고
    • A Slantlet transform based intelligent system for magnetic resonance brain image classification
    • Maitra M., Chatterjee A. A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomed. Signal Process. Control 2006, 1(4):299-306.
    • (2006) Biomed. Signal Process. Control , vol.1 , Issue.4 , pp. 299-306
    • Maitra, M.1    Chatterjee, A.2
  • 5
    • 84873725415 scopus 로고    scopus 로고
    • Brain MR image classification using multiscale geometric analysis of ripplet
    • Das S., Chowdhury M., Kundu M.K. Brain MR image classification using multiscale geometric analysis of ripplet. Prog. Electromagn. Res. 2013, 137:1-17.
    • (2013) Prog. Electromagn. Res. , vol.137 , pp. 1-17
    • Das, S.1    Chowdhury, M.2    Kundu, M.K.3
  • 6
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid intelligent techniques for MRI brain images classification
    • El-Dahshan E.S.A., Honsy T., Salem A.B.M. Hybrid intelligent techniques for MRI brain images classification. Dig. Signal Process. 2010, 20(2):433-441.
    • (2010) Dig. Signal Process. , vol.20 , Issue.2 , pp. 433-441
    • El-Dahshan, E.S.A.1    Honsy, T.2    Salem, A.B.M.3
  • 7
    • 78651253373 scopus 로고    scopus 로고
    • A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO
    • Zhang Y., Wang S., Wu L. A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Prog. Electromagn. Res. 2010, 109:325-343.
    • (2010) Prog. Electromagn. Res. , vol.109 , pp. 325-343
    • Zhang, Y.1    Wang, S.2    Wu, L.3
  • 8
    • 79958134346 scopus 로고    scopus 로고
    • Magnetic resonance brain image classification by an improved artificial bee colony algorithm
    • Zhang Y., Wu L., Wang S. Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog. Electromagn. Res. 2011, 116:65-79.
    • (2011) Prog. Electromagn. Res. , vol.116 , pp. 65-79
    • Zhang, Y.1    Wu, L.2    Wang, S.3
  • 9
    • 84866525215 scopus 로고    scopus 로고
    • An MR brain images classifier via principal component analysis and kernel support vector machine
    • Zhang Y., Wu L. An MR brain images classifier via principal component analysis and kernel support vector machine. Prog. Electromagn. Res. 2012, 130:369-388.
    • (2012) Prog. Electromagn. Res. , vol.130 , pp. 369-388
    • Zhang, Y.1    Wu, L.2
  • 10
    • 84885597453 scopus 로고    scopus 로고
    • An MR brain images classifier system via particle swarm optimization and kernel support vector machine
    • Zhang Y., Wang S., Ji G., Dong Z. An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci. World J. 2013, 2013:1-9.
    • (2013) Sci. World J. , vol.2013 , pp. 1-9
    • Zhang, Y.1    Wang, S.2    Ji, G.3    Dong, Z.4
  • 11
    • 84884575083 scopus 로고    scopus 로고
    • Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network
    • Saritha M., Joseph K.P., Mathew A.T. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit. Lett. 2013, 34(16):2151-2156.
    • (2013) Pattern Recognit. Lett. , vol.34 , Issue.16 , pp. 2151-2156
    • Saritha, M.1    Joseph, K.P.2    Mathew, A.T.3
  • 12
    • 84884870289 scopus 로고    scopus 로고
    • Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series
    • Kalbkhani H., Shayesteh M.G., Zali-Vargahan B. Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed. Signal Process. Control 2013, 8(6):909-919.
    • (2013) Biomed. Signal Process. Control , vol.8 , Issue.6 , pp. 909-919
    • Kalbkhani, H.1    Shayesteh, M.G.2    Zali-Vargahan, B.3
  • 13
    • 84899008824 scopus 로고    scopus 로고
    • Computer-aided diagnosis of human brain tumor through MRI. a survey and a new algorithm
    • El-Dahshan E.A., Mohsen H.M., Revett K., Salem A.B.M. Computer-aided diagnosis of human brain tumor through MRI. a survey and a new algorithm. Expert Syst. Appl. 2014, 41(11):5526-5545.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.11 , pp. 5526-5545
    • El-Dahshan, E.A.1    Mohsen, H.M.2    Revett, K.3    Salem, A.B.M.4
  • 14
    • 84995700894 scopus 로고    scopus 로고
    • Automated classification of brain images using wavelet-energy and biogeography-based optimization
    • Yang G., Zhang Y., Yang J., Ji G., Dong Z., Wang S., Feng C., Wang Q. Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed. Tools Appl. 2015, 1-17.
    • (2015) Multimed. Tools Appl. , pp. 1-17
    • Yang, G.1    Zhang, Y.2    Yang, J.3    Ji, G.4    Dong, Z.5    Wang, S.6    Feng, C.7    Wang, Q.8
  • 15
    • 84930332968 scopus 로고    scopus 로고
    • Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)
    • Zhang Y., Dong Z., Wang S., Ji G., Yang J. Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 2015, 17(4):1795-1813.
    • (2015) Entropy , vol.17 , Issue.4 , pp. 1795-1813
    • Zhang, Y.1    Dong, Z.2    Wang, S.3    Ji, G.4    Yang, J.5
  • 17
    • 75249091763 scopus 로고    scopus 로고
    • Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy
    • Chen Y., Huang S., Pickwell-MacPherson E. Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy. Opt. Express 2010, 18(2):1177-1190.
    • (2010) Opt. Express , vol.18 , Issue.2 , pp. 1177-1190
    • Chen, Y.1    Huang, S.2    Pickwell-MacPherson, E.3
  • 19
    • 84937437761 scopus 로고    scopus 로고
    • Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
    • Zhang Y., Wang S., Dong Z., Phillip P., Ji G., Yang J. Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Prog. Electromagn. Res. 2015, 152:41-58.
    • (2015) Prog. Electromagn. Res. , vol.152 , pp. 41-58
    • Zhang, Y.1    Wang, S.2    Dong, Z.3    Phillip, P.4    Ji, G.5    Yang, J.6
  • 20
    • 0026922952 scopus 로고
    • Wavelets and filter banks. theory and design
    • Vetterli M., Herley C. Wavelets and filter banks. theory and design. IEEE Trans. Signal Process. 1992, 40(9):2207-2232.
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.9 , pp. 2207-2232
    • Vetterli, M.1    Herley, C.2
  • 23
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping M.E., Bishop C.M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B 1999, 61(3):611-622.
    • (1999) J. R. Stat. Soc. Ser. B , vol.61 , Issue.3 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 26
    • 84880692052 scopus 로고    scopus 로고
    • in: International Joint Conference on Artificial Intelligence
    • R.E. Schapire, A brief introduction to boosting, in: International Joint Conference on Artificial Intelligence, vol. 99, 1999, pp. 1401-1406.
    • (1999) A brief introduction to boosting , vol.99 , pp. 1401-1406
    • Schapire, R.E.1
  • 27
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.